TPP ECONOMY REVIEW

Manon Revel mrevel@mit.edu

Technology and Policy Program

ECONOMY*

I. **Production**: Cost Functions and Profit Maximization II. Consumption: Benefit and Demand Functions III. Market: Supply and Demand **IV.** Government Interventions

* This material builds on previous content created by Jesse Jenkins and Mark Staples

I - PRODUCTION

PRODUCTION COST FUNCTIONS

TOTAL PRODUCTION COST FUNCTION

units

 $P \leftarrow cost in $$ to produce Qunits

SIMPLIFIED BAKERY EXAMPLE

► It costs a bakery \$10,000 to buy a new oven. Each loaf requires \$5 of ingredients, and the baker is paid \$10 per loaves produced. What is the production cost function?

FIXED AND VARIABLE COSTS

000

Ca

> Does the ingredients and labor's vary with the quantity of loaves produced? $\gamma_{ES} \rightarrow unit - dependent$ wst

Does the oven's price vary with the quantity of loaves produced? No -> long term cost

FIXED AND VARIABLE COSTS

'production unit'?)

► How much does it cost to produce an extra loaf (a.k.a

MARGINAL COST FUNCTION

Dunit $S_{MC(Q)} = C'(Q)$ cost for 1 extra unit

MARGINAL COST FUNCTION'S SHAPE EXPLAINED Dore Dasse e (lomin) additional 15sec. additional 15sec. How much more time do How much more time do need for the third cookie? 11th adres: 1h! cooking time. And for the eleventh?

- ► You are baking cookies in a oven's rack that can fit 10 cookies.
- ► It takes you 5min to bake the first cookie. Preparing the second cookies takes you an additional 15sec.

► How much more time do you

RETURN TO SCALE

the more unit > Decreasing Return To Scale: vice versa

How would you qualify the bakery's return to scale? -> constant in nearing \leftarrow The cookies baker's? Give an example of decreasing $(a) = q^2$ (Ca) increasing return to scale. de crecenn,q

$C''(Q) = \Pi C'(Q)$ You produce, the lower the Increasing Return To Scale: $\Pi C'(0) \downarrow (\downarrow) \subset C'(0) < O$ marginal cost > Constant Return To Scale: nc'(Q) = onto C'(Q) = o

AVERAGE PRODUCTION COST

AC(Q) =

• •

AVERAGE PRODUCTION COST SHAPE

.

DIFFERENCE BETWEEN MARGINAL COST AND AVERAGE COST*

- > Your average before the final exam in your class is 85.
- ► If you get 80 at the final, your marginal improvement is below your average and your average goes down.
- ► If you get 90 at the final, your marginal improvement is above your average and your average goes up.

* Example from *thoughtco.com*

DIFFERENCE BETWEEN MARGINAL COST AND AVERAGE COST

Formally, observe that MC(Q) = C'(Q) and $AC(Q) = \frac{C(Q)}{Q} \rightarrow \text{what is } AC(Q) \text{ motorially}^2$ find $Q_{s.t.} AC'(Q) \ge 0$; $\leq O$ > Note that $AC'(Q) = \frac{f'(Q)Q - C(Q)}{Q^2} = \frac{MC(Q) - AC(Q)}{O} \implies AC'(Q) \ge O$

So the average cost decreases as long as the marginal cost is below the average cost, and vice versa. Both curves cross when the average cost is minimal.

ECONOMY OF SCALE

 \blacktriangleright When AC(Q) the average cost declines as a function of the quantity produced, we talk about economies of scale.

► Economy of scale: AC'(Q) < O> Diseconomy of scale: AC'(Q) > O

Did the bakery experience economy of scale? $AC(Q) = \frac{10000}{Q} + 15$; $AC'(Q) = -\frac{10000}{2}$ $\infty 2$

PROFIT MAXIMIZATION

NET PROFIT OR PRODUCER SURPLUS

$\Pi(Q) = R(Q) - C(Q)$

ou enve

(at constant selling Price, R(Q) = P(Q)

REVENUE OF A PRICE-TAKING FIRM

> What would it mean for a company to have the following revenue function (P is fixed)?

function?

R(Q) = PQMot import the price
 Which kind of companies would have such a revenue

MAXIMIZE REVENUE OF A PRICE-TAKING FIRM

 $\sum_{Q} \max_{Q} \Pi(Q) = \max_{Q} \left(R(Q) - C(Q) \right) = \max_{Q} \left(PQ - C(Q) \right)$ $= \Pi'(Q_0) = P - C'(Q_0) = P - MC(Q_0) = O = MC(Q_0) = O = MC(Q_0) = P$

► If you can earn \$100 for each unit sold, you earn money on each unit sold such that the marginal cost to produce the unit is below \$100.

MAXIMIZE REVENUE OF A PRICE-TAKING FIRM

► If $C(Q) = 1000 + 100Q + 3Q^2$ for a price-taking firm with a market price of \$400, how many units shall be produced to maximize profit? What is the producer surplus then?

 $\Pi((\varphi) = 1_{00} + 6 \varphi = 400$

=) (Q = 50)

COST, MARGINAL COST AND PROFIT VISUALLY

COST, MARGINAL COST AND PROFIT VISUALLY

BENEFIT FUNCTIONS

MARGINAL BENEFIT FUNCTIONS

MB(Q) = Pprice one is willing to for yunis

EXAMPLES

► $MB_1(Q) = 5 - Q$ $\succ MB_2(Q) = 2 - 2Q/3$

> Why is the function decreasing?

► What is it reminiscent of?

TOTAL BENEFIT

B(O) =

MB(q)dq

NET BENEFIT OR CONSUMER SURPLUS

$\zeta(Q) = B(Q) - PQ$

whomen

don't influme man/ut influme

MAXIMIZE BENEFIT OF A CONSUMER

 $\Pi B(Q_{0}) = P$ (=) Intrition

COST AND BENEFIT FUNCTIONS

Cost Function

Benefit Function

► MB(Q) = P and D(P) = Qmarginal change total attome ► B(Q) = P► $\zeta(Q) = B(Q) - PQ$

SUPPLY AND DEMAND CURVES

Supply Curve: aggregate of all marginal cost functions for all producers

$$P = S(Q) = MC_{agg}(Q)$$

functions for all consumers

$$P = D(Q) = MB_{agg}($$

> What shall be the monotonicity of the supply and demand curves? it costs more to produce more more into ore is less willing to consume more units

Demand Curve: aggregate of all marginal benefit cost

MARKET EQUILIBRIUM

MARKET EQUILIBRIUM

► The market is at equilibrium when:

 $P^* = S(Q^*) = D(Q^*)$

 \blacktriangleright *P** is the *market clearing price*, the price at which supply equals demand so the market is clear. \triangleright^{\star}

MARKET EQUILIBRIUM — EXAMPLE

► Let a market in which the aggregate cost function is $C(Q) = 25 + 20Q + 3Q^2$ and the aggregate demand function is D(Q) = 200 - 3Q. $\pi(Q) = 20 - 6Q$ P*_ 140 $20 \times (200 - 140) / 2 = 600$

> What is the market equilibrium? $\Pi B(Q) = 200 - 3Q$ $\frac{20 \times (140 - 20)/3}{-25}$ How much profit do producers make? $\frac{20 + 60}{-25} = \frac{200 - 30}{-30}$ = 117 5 How much net benefit consumers enjoy? $\frac{100}{-20} = \frac{200}{-20}$ ► How much net benefit consumers enjoy?

Check with the formulas !

MARKET EQUILIBRIUM — EXAMPLE

PRICE ELASTICITY

PRICE ELASTICITY OF DEMAND

how would you expect the demand to change?

$$E(p) = \frac{dD^{-1}/D^{-1}}{dP/P} \Big|_{P=p}$$

$$E(p) = \frac{dD^{-1}(p)}{dP} \frac{P}{D^{-1}(p)}$$

► What is the elasticity of D(Q) = 5 - Q?

n'(P) = 5 - Pd D'(P)/d P = -1ELP 5-P

PRICE ELASTICITY OF DEMAND

-1

Elastic Demand

Demand decreases at least as rapidly as price increases

Inelastic Demand

Demand secresses Slower than the price

S(Q) - P **PRICE ELASTICITY OF SUPPLY** S'(P) = Q

> Price elasticity of supply is the variation in supply as a response to the variation in price. If the price increases, how would you expect the supply to change?

$$E(p) = \frac{dS^{-1}/S^{-1}}{dP/P} \Big|_{P=p}$$

•
$$E(p) = \frac{dS^{-1}(p)}{dP} \frac{P}{S^{-1}(p)}$$

 $rac{P}{S^{-1}(P)} = \frac{P}{z} - \frac{3}{z}$ 2) ds (P)/dP = 1/2 ► What is the price elasticity of S(Q) = 3 + 2Q? 3) $E(p) = \overline{P-3}$

PRICE ELASTICITY OF SUPPLY

Inelastic Supply

denages

Howen than price

0

 dS^{-} $E(p) = \frac{dP}{dP} \frac{S^{-1}(p)}{S^{-1}(p)}$ 30 E(p)

Elastic Supply

Supply decreases at least as rapidly as price increases

equilibrium in the market whose aggregate cost demand function is D(Q) = 200 - Q?

 $E_{s}(p) = \frac{P}{P-20}$

z) D(Q) = 200 - Q = D'(P) = 200 - P= <u>-</u> ZOZ - P

> What are the price elasticities of supply and demand at function is $C(Q) = 25 + 20Q + 3Q^2$ and the aggregate i) $S(Q) = 20 + 6Q = P = S(P) = P_0 - \frac{10}{3}$

IV - GOVERNMENT Interventions

WHY PREVENT MARKETS FROM BEING COMPETITIVE

Welfare can be re-distributed through taxation

- Governments can limit prices or quantities produced

WHY PREVENT MARKETS FROM BEING COMPETITIVE

Let's get back to our previous example in which equilibrium is at $(Q^*, P^*) = (20, 140)$.

> The producers' surplus was found to be

- S(Q) = 20 + 6Q and D(Q) = 200 3Q. The market
- $\Pi(Q^*) = \$1,175$, and the consumers' $\zeta(Q^*) = \$600$.

• • • • • • • • • • • • • • •

PRICE CEILING

PRICE CEILING

► Now, the consumers start protesting because of high prices, and the government decides to introduce a price *ceiling* of \$128/car.

► Hence, the producers and now produce $128 = 20 + 6Q' \implies Q' = 18$

► What are the consumers and producers surplus?

4/4 Government

DEADWEIGHT LOSS

How did the surpluses changed?

➤ The total welfare decrease is a reduction in the equilibrium is not achieved.

► This decrease is called *Deadweight Loss*.

- economy efficiency that occur when the competitive

PRICE CEILING

► What happens to the quantity demanded by the consumers at the new price?

It in reases, creating a production Shortage.

4/4 Government

PRICE FLOOR

PRICE FLOOR

► Now, the producer threaten to relocate, and the car.

► Hence, the producers and now produce $152 = 20 + 6Q' \implies Q' = 22$

► What are the consumers and producers surplus?

government decides to introduce a *price floor* of \$1\$2/

1) EF 28 Supplus new offer 20

4/4 Government

DEADWEIGHT LOSS

How did the surpluses changed? ► What happens to the quantity produced at the new price?

TAXATION

TAXATION

- > Producers argue that the tax will drive the costs up
- ► What do you think?

> The government taxes the producers' revenue at \$t/unit.

Consumers argue that the tax will impact the market price, hence leading to a diminishing consumer welfare.

while they will need to maintain the prices low to keep selling, hence leading to a diminishing producer welfare.

S(Q) = aQ + b $\mathcal{D}(Q) = c(Q+o)$ $\mathcal{D}(Q) - k = cQ + d - k$

$$S(\varphi^{T}) = D(\varphi^{T}) - t$$

$$= \frac{d - t - b}{a - c}$$

$$p^{T} = \frac{ad - at - bc}{a - c}$$

$$a - c$$

$$P^{C} = P^{T} + J$$

After tax $S(Q) = P - \lambda$ D(Q) = P = S(Q) + k = D(Q)Same as before !

 $\mathcal{S} = \frac{\mathcal{Q}^*(\mathbf{ol} - \mathcal{P}^*)}{\overline{\mathbf{ol}}}$

 $\pi T = Q^T \times (P^T - b)$ $T = Q^*(P^* - b)$ 2

 $\varphi^* = \frac{d-b}{a-c}$ $P^* = a\left(\frac{d-b}{a-c}\right) + b = \frac{ad-cb}{a-c}$ $\varphi^{T} = \frac{d-t-b}{a-c} = \varphi^{*} - \frac{k}{a-c} \qquad P^{T} = P^{*} - \frac{at}{a-c} = P^{-} - k$ $\xi - \xi^{T} = \frac{1}{2} \left(\varphi^{*}(a - P^{*}) - \varphi^{T}(d - P^{c}) \right)$ (1) $T - T = \frac{1}{2} \left(\varphi^*(P^* - b) - \varphi^{\gamma}(P^- - b) \right) (z)$ solve (1) > (2) !