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ABSTRACT

Representative democracy is a widespread and essential part of democratic governance.
Our understanding of it has been largely shaped by the triumph of elections that vest pe-
ripheral access to power through episodical polls. How would representative democracy
look under different selection rules? In an attempt to reflect on foundational principles on
which we could build a renewed case for representative democracy as democratic governance,
this thesis explores democratic innovations for selecting representatives and focuses on the
interplay between selection mechanisms, epistemic performance, and procedural aspects.

The first chapter investigates the optimal number of voters needed to aggregate votes
on a binary issue under majority rule. It takes an epistemic view where the issue at hand
has a ground truth “correct” outcome and each one of 𝑛 voters votes correctly with a fixed
probability, known as their competence. Assuming that the best experts, i.e., those with the
highest competence, can be identified to form an epistemic congress, this chapter surprisingly
shows that the optimal congress size should be linear in the population size, even with expert
decision-making.

The next chapters delve into the concept of liquid democracy, a governance mechanism
in which citizens can either vote directly or delegate their votes to others, and examine
the epistemic and procedural performances of this approach offering insights from both
theoretical and empirical perspectives.

Taking an epistemic view, the second chapter highlights delegation scenarios where liquid
democracy is likely to find the ground truth. It treats delegations as a stochastic process akin
to well-known processes on random graphs —such as preferential attachment and multi-
types branching process —and relate their dynamics to liquid democracy’s performance.
Along the way, it proves new bounds on the size of the largest component in an infinite
Pólya urn process which may be of independent interest.

The third chapter presents empirical experiments designed to compare liquid democracy
with direct democracy, the counter-factual. It validates the theoretical findings of the second
chapter, providing evidence that delegation mechanisms align with theoretical expectations.
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The fourth chapter analyzes delegation dynamics in a real-world setting and explores
how liquid democracy functions in scenarios with contentious issues. It reveals insights into
the patterns of delegation and the usage of liquid democracy in non-epistemic contexts.

The fifth chapter reflects on lottocracy (selection of representatives at random) and proxy
democracy (selection based on self-selection and flexible nominations that determine the
relative influence of representatives) as two models to select representatives. It investigates
the procedural aspects of both selection mechanisms exploring how inclusion, equality and
legitimacy would be realized under lottocracy and proxy democracy.

The sixth chapter, drawing on computational social choice, formulates a unified frame-
work for comparing selection mechanisms. It devises a model in which different selection
mechanisms can be formalized and evaluated axiomatically. It classifies selection mecha-
nisms based on whether they are open-closed, flexible-rigid, and direct-virtual and propose
the following five axioms: proportionality, diversity, monotonicity, faithfulness, and effec-
tiveness.

Throughout, the thesis intertwines insights from mathematics (social choice theory, ap-
plied probability, statistics), political philosophy, and empirical analyses to provide a com-
prehensive exploration of different facets of representative democracy. The interdisciplinary
approach reflects the complexity and richness of democratic governance and calls for contin-
ued collaboration across disciplines to tackle its challenges and shape its future.
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Chapter 1

Introduction

Democratic governance is an area of active social scientific inquiry: new forms of citizen

representation, participation, and deliberation are being tested and deployed around the

world [79, 241]. Defined as a process in which the members of the group being governed

have binding authority over the decisions, democratic governance is in inevitable tension with

pluralism: on which grounds should group members to be obliged by a decision they may very

well disagree with, when the institutional arrangement regards them as free and equal? This

legitimacy dilemma further intensifies with the introduction of representative democracy,

according to which group members’ representatives decide for all. The people’s binding

authority is henceforth manifested in two phases: the selection stage (where representatives

are selected) and the decision stage (where representatives make decisions).

The triumph of elections in the eighteenth century amounted to equate representative

democracy with elections [161]. It further coincided with the development of theories and

symbols for the expression of the people’s will through their representatives, voting equal-

ity, formal authorization and accountability mechanisms. At the same time, representative

democracy, and more often, elections, are increasingly perceived as founded on elitist prin-

ciples [145] or decried for their oligarchic drift [227].
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While some have argued that representation would allow for a greater form of democ-

racy in which motivated and competent citizens are selected by the people through free and

fair elections [213] resulting in a division of labor [92], representative democracy is some-

times seen as a lesser form of democracy, a pragmatic approximation of the democratic ideal

deemed necessary to accommodate large polity [171]. Concomitantly, pollsters have observed

global discontent with the ways in which democracies work [236], historical lows in trust in

representative institutions in the United States [128] and plummeting democratic values

worldwide [226]. Many scholars have documented democratic recessions [59, 69], democratic

discontent [209], democratic decline [8, 56, 149] and lessons, successes and failures of demo-

cratic transitions [159, 160]. After Francis Fukuyama’s optimistic view that democratization

would bring an end to history and a stable equilibrium for governance [90], others came to

fear that representative democracies would be merely a blip in history between long-lasting

phases of political inequity and illiberalism.

Philosopher John Rawls’ answer to the legitimacy paradox was to ensure that power was

“exercised in accordance with a constitution the essentials of which all citizens as free and

equal may reasonably be expected to endorse in the light of principles and ideals acceptable

to their common human reason [199].” However, in the face of rising “frustration with and

alienation from the political elite” [241], Rawls’ answer might not be sufficient. Instead, we

might be on the verge of a socio-political moment where “nations feel tormented by evils so

great that the idea of changing their constitutions presents itself to their thoughts” [66].1

Such a moment is necessarily as scary as it is risky: as Pippa Norris argues, “could there be

enough agreement in the room that it wouldn’t basically get worse rather than better? And

that’s the big danger.” 2 This, however, is reminiscent of the words famously carved on the
1My translation for the French: “les nations se sentent tourmentées de maux si grands que l’idée d’un

changement de leur constitution se présente à leur pensée.”
2Is democracy in decline? Kennedy School professors voice optimism and concerns. https://ash.harvard.

edu/democracy-decline-kennedy-school-professors-voice-optimism-and-concerns Last accessed: July 27th
2023
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southeast wall of the Jefferson memorial and borrowed from a letter Thomas Jefferson wrote

to Samuel Kercheval [126]:

I am certainly not an advocate for frequent and untried changes in laws and

constitutions. I think moderate imperfections had better be borne with; because,

when once known, we accommodate ourselves to them, and find practical means

of correcting their ill effects. But I know also, that laws and institutions must

go hand in hand with the progress of the human mind. As that becomes more

developed, more enlightened, as new discoveries are made, new truths disclosed,

and manners and opinions change with the change of circumstances, institutions

must advance also, and keep pace with the times. We might as well require a

man to wear still the coat which fitted him when a boy, as civilized society to

remain ever under the regimen of their barbarous ancestors.

We may have the opportunity to provide a moment of fundamental rethinking of the

values and contexts on which Western republicanism was built and for all citizens to co-

author renewed institutions. The eighteenth-century model of representative democracy was

designed for the geographic representation of small, homogeneous, and restricted demos.

James Madison explains the ratio of representatives to citizens to be one for thirty thousand

in his institutional framework [112], the abbot Sieyès refers to the six million French scattered

throughout a vast and disconnected territory. Representative democracies were infamously

founded on discrimination against a majority of the population, limiting voting rights to

males, property owners, or whites. This framework is both no longer relevant and harmful

for historically and newly marginalized communities [89, 170, 196]. How could we ensure

that the diversity of large nations is fairly represented in representative democracies and that

representatives have the relevant experience and expertise to legitimately decide on behalf

of the citizenry?
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At the core of these questions is an intuition that representative democracy is not bound

to be a lesser form of democracy, but that it fails to embody core democratic values when

the latter are primarily thought of as a function of the selection stage and not of the deci-

sion stage. 3 Intriguingly, our reasons and symbols for democratic values (such as equality

and inclusion) in electoral democracies, following a Schumpeterian account of representative

democracy, are often defined at the selection stage: the one-person-one-vote slogan confers

equal weight in selecting between a set of candidates and holding them accountable peri-

odically, but it does not guarantee that the set of candidates was democratically or fairly

chosen. In such a model of representative governance, democratic values are relegated to a

selection problem [148].

1.1 Thesis Objectives

In this thesis, we explore theories of representation where group members have binding

authority over the decisions in that they have an equitable chance of being selected to hold

political offices: moving beyond reasons and symbols for the demos as instrumental in select-

ing representatives, could we provide reasons and symbols for all citizens to have reasonable

and equitable chances of becoming representatives?

Several theoretical and empirical aspects of representation could be discussed as a result

of this question such as campaigning rules, places where representative institutions are held,

processes through which decisions are made, or selection models (and associated legitimacy)

to choose the representatives. Building on recent work in social choice theory [e.g., 51,

83, 102, 129] and political philosophy [e.g., 145, 229, 230], this thesis explores the epistemic
3The concept of representative democracy remains popular — a Pew poll from 2017 conducted across 38

nations found that a median of 78% of participants believe it to be a good way to govern. [237] However, large
shares of citizens from several countries also indicated in 2021 that their political systems needed reform.
[238]
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dimension4 and the procedural dimension5 of selection rules for representatives, in an attempt

to reflect on foundational principles on which we could build a renewed case for representative

democracy as democratic governance.6

In this collection of essays, we investigate epistocracy (that selects experts), proxy democ-

racy (in which citizens either self-select to be representatives or flexibly nominate self-selected

citizen(s) through frequent nomination processes; in turn, representatives have a weight equal

to the number of citizens they represent, which scales their votes in congress), liquid democ-

racy (a variant of proxy voting with area-specific transitive delegations and the possibility to

recall delegations at any time) and lottocracy (where representatives are drawn randomly).

We do not intend to conclude on an ultimate selection model, but rather to explore the

ecology of selection rules for representative assemblies. We hold that no such process could

provide a definitive, time-invariant or context-independent answer to the problems of rep-

resentation. Most selection models come with defensible benefits and exploitable failure

modes. Exploring various selection rules may allow us to reflect on normative accounts

taken for granted and processes more adequate for particular contexts, to distribute the

failure modes combining complementary bodies selected for different intent, and to move

beyond a single dominant view on how representation is operated in democratic governance.

The thesis does not engage with other important aspects of decision-making that oc-

cur once representatives are selected. For instance, the interplay between selection and

post-selection treatment of representatives is another area of active research (see, for in-
4The epistemic dimension is related to the capacity to make good decisions under a decision-making

process.
5The procedural dimension is related to the intrinsic values of the selection procedure.
6In this view of representation, elections are also not inherently problematic, they only become so when

the demos has very little oversight on who they have to choose from [148]. Places are experimenting with
novel methods for selecting candidates in elections for instance in Nigeria, Georgia, Ghana, or Nevada; see,
e.g., [60, 184] and https://www.bosch-stiftung.de/sites/default/files/publications/pdf/2022-11/Exploring_
Worldwide_Democratic_Innovations_Long_Report.pdf). We view elections as inducing one mode of rep-
resentation that comes with strengths and shortcomings, and are interested in other modes of representation
achievable through other selection rules.
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stance, [142]). Further, following Jürgen Habermas’ work on deliberative democracy [109],

many others have also studied and deployed democratic innovations that empower public

reasons to emerge through cogent discussions and participation of citizens. 7 Expanding

our understanding of how those included in these various consultative phases, as citizens-

representatives, are selected, given binding power, and held accountable could be complemen-

tary to re-designing democratic governance for the twenty-first century [11]. Last, changing

our theoretical conception of representation should be accompanied by a theory of change.

In particular, institutions may need re-designing to allow all citizens, regardless of their

occupation, to be reasonably able to become representatives 8 Campaigning may also re-

quire tighter regulation to open races to more people, regardless of wealth or fame.9 Such

reflections are outside of the scope of this work.

1.2 Thesis Outline

The essays assembled in this thesis attempt to expand our imagination regarding the design of

representative institutions to shape the future of epistemically and procedurally responsible

forms of democratic representation. The first two chapters of the thesis explore epistocracy

and liquid democracy from a mathematical perspective, within an established framework in

social choice theory that investigates the truth-seeking dimension of decision-making. The

next chapter provides results on experimentation with liquid democracy testing the theory
7Deliberative polling and mini-publics have diversified the voice of those heard when writing consti-

tutions [182], legalizing abortion [58], or setting the agenda to curb climate change [182]. Some of
these initiatives are providing randomly selected citizens binding power over decisions [180]. Participa-
tory budgeting, invented in Brazil in the 80s, further lets citizens allocate public funds through collab-
orative processes [233]. Participatory planning and multilevel policymaking have spread in Latin Amer-
ica. https://epd.eu/wp-content/uploads/2022/09/case-study-latin-america.pdf Countries got equipped with
ministries of the future (Sweden), institutionalized online participatory tools in Taiwan, Nigeria, North Mace-
donia or South Korea, experimented with versions of proxy democracy in Argentina, and Germany [121].

8In that vein, citizen assemblies experiment with periodic reunions during weekends to accommodate
various schedules.

9See Lessig [148] for more details on that.
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previously developed. The fifth chapter provides descriptive metrics for a liquid democracy

experiment conducted with subjective questions and a large community. The sixth chapter

benchmarks two selection procedures, lottocracy, and proxy democracy, in an attempt to

highlight the normative and contingent trade-offs they induce and is particularly interested

in how they achieve descriptive representation. The last chapter suggests a novel axiomatic

framework to provide mathematical guarantees over procedural aspects of representative

democracy.

1.2.1 How Many Representatives Do We Need? The Optimal Size

of an Epistemic Congress

Chapter 2 investigates the interplay between expertise and the size of the representative body.

Imagine (unrealistically) that we can fill the representative layers of a democratic process

with the most expert citizens, assumed to make decisions independently in the probabilistic

sense. How many representatives do we need to maximize the probability that a majority of

them makes the correct decision?

Following Condorcet’s seminal approach, we rely on the epistemic model for decision-

making in which citizens differentiate between two options where one is assumed to be

better than the other. Citizens have a probability of finding the correct outcome (referred

to as their expertise) drawn independently from a fixed distribution that governs the votes

they cast. 10 We hypothesize that experts, defined as those with higher chances of finding
10In more detail, in Condorcet’s seminal epistemic approach, n voters cast independent binary votes and

assume that one of the outcomes is objectively better and that each voter independently selects the better
outcome with probability 𝑝 > 1/2 (that is, if voters have just enough information to be more accurate than
an unbiased coin at deciphering the correct outcome). Then the probability that a majority of voters finds
the ground truth tends to one as the population increases. This result is known as the Condorcet Jury
Theorem. In other words, a majority will asymptotically be better than any fixed number of voters. Now, if
we tweak the model to allow some voters to be more accurate than others (each voter i is correct with distinct
probability 𝑝𝑖 where the 𝑝𝑖 are independent identically distributed samples from a fixed distribution), under
mild conditions, the above statement generalizes to: a majority vote will asymptotically outperform any
fixed number of experts.
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the ground truth (or, mathematically, those whose expertise corresponds to the first-order

statistics drawn from the expertise distribution) are selected and find the optimal number

of experts needed to maximize that a majority of them are correct.

Against a common intuition [221], we find that for a fixed and regular distribution of

expertise, a constant fraction of the population is needed to maximize the probability of

being correct. In other words, under these modelling assumptions, a linear number of citizens

is needed to justify optimal decision-making under majority rule: even in a scenario where

experts are chosen, optimality seems to heavily rely on large (hence diverse) representative

bodies. This result is striking because it holds even when allowing the top representatives

to become arbitrarily accurate, choosing the correct outcome with probabilities approaching

one.

We further extend the Condorcet jury theorem (see footnote 10) to cases in which the

distribution of expertise varies with the population size: we characterize scenarios in which

few experts are more accurate than majority voting with high probability. If the underlying

expertise distribution changes with the population size (as it may be if information or ed-

ucation infrastructures are hard to keep at a constant performance level as the population

increases) and the rate at which the societal bias towards the ground truth decreases too

fast, there exists a regime in which, over time, a sub-linear number of experts submitted to

majority voting would beat majority voting amongst all citizens with high probability.

It goes without saying that the hypothesis that experts could be arbitrarily chosen to

form the representative body is a mathematical abstraction. While it helps relating mod-

elling assumption to the role of expertise in collective-decision making, it is not realistic or

defensible in actual representative democracy.

This work was conducted with Tao Lin and Daniel Halpern and published in the Pro-

ceedings of the 36th AAAI Conference on Artificial Intelligence [203].
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1.2.2 In Defense of Liquid Democracy

Chapter 3 investigates a novel selection model, liquid democracy. Liquid democracy is con-

ceptually situated between direct democracy, in which voters have direct influence over

decisions, and representative democracy, where voters choose delegates who represent them

for some time. Under liquid democracy, voters have a choice: they can either vote directly

on an issue as in direct democracy or delegate their vote to another voter, entrusting them

to vote on their behalf. The defining feature of liquid democracy is that these delegations

are transitive: if voter 1 delegates to voter 2 and voter 2 delegates to voter 3, then voter 3

votes (or delegates) on behalf of all three voters.

Liquid democracy has gained prominence around the world. The most impressive example

is that of the German Pirate Party, which adopted the LiquidFeedback platform in 2010 [137].

Other political parties, such as the Net Party in Argentina and Flux in Australia, have run

on the wily promise that, once elected, their representatives would be essentially controlled

by voters through a liquid democracy platform. Companies are also exploring the use of

liquid democracy for corporate governance; Google, for example, has run a proof-of-concept

experiment [113].

Practitioners, however, recognize that there is a potential flaw in liquid democracy,

namely, the possibility of concentration of power, in the sense that certain voters amass a

relatively large number of delegations, giving them pivotal influence over the final decision.

To understand this problem, we study the paradigm in the epistemic model as in Chap-

ter 2, where voters decide on a binary issue for which there is a ground truth. Previous work

showed that, under certain assumptions on the delegation model, a few voters may amass

such a large influence that liquid democracy becomes less likely to identify the ground truth

compared to direct democracy [129]. We quantify the amount of permissible concentration of

power and examine more realistic delegation models that ensure that (with high probability)
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there is a sharp limit on the maximum number of delegations received. Our results demon-

strate that the delegation process can be treated as a stochastic process akin to well-known

processes on random graphs —such as preferential attachment and multi-types branching

process— that are sufficiently bounded for our purposes [73]. As a side result, we prove new

bounds on the size of the largest component in an infinite Pólya urn process, which may be

of independent interest. Our work suggests that existing and new results in random graph

theory may alleviate concerns raised about liquid democracy and bolster the case for the

applicability of this emerging paradigm.

This work was conducted with Daniel Halpern, Joe Halpern, Ali Jadbabaie, Elchanan

Mossel, and Ariel Procaccia and was published in the Proceedings of the 2023 ACM Con-

ference on Economics and Computation [111].

1.2.3 An Empirical Analysis of Liquid Democracy’s Epistemic Per-

formance

In Chapter 4, we test the theoretical results of the third chapter through a series of twelve

experiments. Through a matched pair design, we form delegation graphs induced by the

delegation process in liquid democracy, and compare the results to direct voting. We esti-

mate the theoretical delegation mechanisms studied in the previous chapter and find that

the empirical delegation mechanisms are consistent with those identified theoretically. A

higher propensity to delegate is associated with lower expertise, and delegation rates toward

representatives tend to increase with their relative expertise, which is consistent with the

delegation models identified in Chapter 2.

Taken together, the results of Chapters 3 and 4 uncover theoretical regimes empirically

validated in which liquid democracy performs well, bolstering the case that liquid democracy

may leverage interpersonal knowledge embedded in social networks to improve decision-
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making. Importantly, these conclusions are limited to well-connected networks and non-

polarising, binary, and factual questions.

This work was conducted with the guidance of Adam Berinsky and discussed with Daniel

Halpern, Joe Halpern, Ali Jadbabaie, and Ariel Procaccia. An early version of this work

was accepted at the ACM Conference on Equity and Access in Algorithms, Mechanisms, and

Optimization 2022 [202].

1.2.4 A Descriptive Analysis of Liquid Democracy’s Procedural

Performance

Beyond the epistemic dimension of liquid democracy, delegation dynamics in large groups for

contentious and potentially polarizing issues remain under-studied in the literature. Chap-

ter 5 presents the results of an experiment run with an academic institution, involving 117

participants each answering 11 questions about the institute’s governance. While it has often

been mentioned that cycles in the delegation graph and concentration of power are practical

obstacles to liquid democracy, we show that in practice those are unlikely: there are very

few two-cycles and little evidence of concentration of power. However, we find that a large

portion of persons that are delegated to did not participate in the survey, posing another

kind of practical concerns.

We also observe that the delegative feature is used as envisioned by liquid democracy

advocates [228]: participants tends to choose different representatives for different questions.

Finally, this chapter raises a series of questions in terms of the behavioral and cognitive

aspects of individual delegations that require further attention as we explore scaling up novel

selection processes for representative democracy.
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1.2.5 How to Open Democratic Representation to the Future?

Chapter 6 engages with procedural aspects of selection mechanisms for representative democ-

racy in an attempt to broaden institutions’ perspectives. We consider the ecology of selec-

tion rules for representative assemblies (such as parliamentary chambers), introducing proxy

democracy as a selection rule for representation in open democracies and comparing it to

lottocracy.

The chapter also investigates how Hélène Landemore’s accounts of democratic, legitimate

and descriptive representations [145] are realized under lottocracy and proxy democracy,

drawing on political and social choice theories to integrate these traditionally separate fields

of study. While proxy democracy opens representative institutions reinforcing the current

understanding of representative values, lottocracy cannot be fully justified in that context;

this essay builds on recent political theory to characterise appropriate novel grasps on the

concept of representation[57, 108, 145].

Last, this chapter identifies a gap in the normative theory of lottocracy that raises a series

of questions. Biased self-selection may impair lottocracy’s promise to promote descriptive

representation: should self-selection be handled by mandates, quotas, or ignored? In the

first case, is there a moral duty to serve as a representative or a substantive argument that

those in power should not seek it? In the second case, which fairness or equity standards

should replace the equality principle? In the third case, why should equality be preferred

over diversity?

While democracies historically tend to try out novel procedures that fit a particular nor-

mative ideal and evaluate other externalities after the fact, this essay benchmarks lottocracy

and proxy democracy, in an attempt to highlight the normative and contingent trade-offs.

While both systems outperform electoral alternatives on the dimensions under study, they

induce tensions often overlooked. Nonetheless, clarifying the normative compromises seems

36



crucial to address the challenges facing democratic systems and shape the future of epistem-

ically and procedurally responsible forms of representation.

This work was published in the European Journal of Risk Regulation [201].

1.2.6 An Axiomatic View for Representative Democracy

Chapter 7 explores employing concepts and tools from computational social choice to devise

a model in which different selection mechanisms can be formalized and compared from a

procedural standpoint. As the world’s democratic institutions are challenged by dissatis-

fied citizens, scholars have proposed and analyzed various (innovative) methods to select

representative bodies. However, a unified framework to analyze and compare different selec-

tion mechanisms is missing, resulting in very few comparative works. This chapter intends

to define desirable representation axioms to be conceptualized and evaluated and proposes

a unifying mathematical formulation of different selection mechanisms as well as various

social-choice-inspired axioms. We classify selection mechanisms based on whether they are

open-closed, flexible-rigid, and direct-virtual and propose the following five axioms: propor-

tionality, diversity, monotonicity, faithfulness, and effectiveness.

This research was conducted with Niclas Bohemer, Rachael Colley, Markus Brill, Piotr

Faliszewski and Edith Elkind thanks to the workshop, Algorithmic Technology for Democ-

racy, organized by Davide Grossi, Ulrike Hahn, Michael Maes, and Andreas Nitsche at the

Lorentz Center [205].

1.3 Reflections on the Methods

The approach taken in this thesis mixes elements of social choice theory, applied probability,

statistics, and political philosophy.

The first three chapters of the thesis investigate the epistemic performance of selection
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models for representative democracy. This account focuses on truth-seeking scenarios, where

a group is tasked with organizing to find, with high probability, an unknown true state of

the world. While being a common mathematical formulation, this is a notoriously contested

model for democracy [187], because it suffers from important objections: democratic gov-

ernance is not reducible to right or wrong and the quality of a selection rule is not about

selecting a representative body with a a priori high probability of voting correctly.

I agree with these objections and do not intend to argue that the epistemic framework

model is right for democracy. Democratic decision-making is far more complex and intricate,

almost always meddling with value-based considerations and intense deliberation or lobbying

that cannot be captured by a right-or-wrong aggregative framework. When tasked to describe

patterns under specific and defined hypotheses, the epistemic framework is simply intended

as a tool to expand our understanding of a particular aspect of decision-making: most

decisions do partially rely on objective dimensions that the epistemic approach intends to

capture.

Without imposing a stylized and simplifying mathematical abstraction onto such a com-

plex object as democratic governance, I am interested in counter-intuitive or empirically

validated lessons we could gain from studying this dimension of decision-making taken in

isolation, and their interplay with other key aspects of democratic decision-making.

Within the truth-seeking framework where rules are evaluated based on their likelihood to

find the good answer, experts (defined mathematically as those more likely to find the correct

outcome) have an advantage. Interestingly, however, we show that a small epistocracy is not

optimal under common assumptions.

On the contrary, we could expect liquid democracy to lead to excessive concentration of

power that would limit its likelihood of identifying with high probability, correct outcomes. In

turn, we identify theoretical conditions under which transitive delegations allow sufficiently

numerous and competent representatives to meet certain guarantees on the quality of the
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outcome. Next, we confront through a series of experiments in a context where the questions

are designed to have a correct outcome. The theory and empirical parts allow us to test

whether liquid democracy lives up to its promise to displace the necessary condition of

collective intelligence from “knowing about an issue” to “knowing who knows about this

issue.”

Alone, the epistemic dimension of decision-making is not enough to reason about novel

forms of representation. This is why I turned to political philosophy to reflect on procedural

aspects of the novel selection rules. The breadth and depth of works that have explored

questions of representation in political philosophy is both breath-taking and dating back to

ancient philosophers, though it remains unknown to many of the mathematical communities

that study democracy from a computational perspective. While, in the last chapter, I propose

a unified framework to investigate procedural aspects of selection rules following my readings

of political philosophy, I also attempted to contribute to the recent developments in the field

regarding selection rules for representative democracy, some of which invoke social choice

research. Connecting knowledge, rigor, concepts and intuitions from the different disciplines

felt like the exploration of a kaleidoscope’s different facets which, taken together, gave a

more complete picture of the solution space.

In my humble journey trying to learn both the mathematical and philosophical languages

concerned with representative aspects of democracy, I came to appreciate their incredible

synergy. I hope that we will keep creating communication channels across fields that are

animated by the same problems and that interdisciplinary approaches will contribute to

shaping meaningful questions and providing apposite answers.
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1.4 Glossary

Below are a few terms defined in the introduction that we will encounter frequently in the

thesis.

Epistemic Dimension of Decision-Making: A lens through which examining decision-

making processes that is concerned with the processes’ ability to identify correct or good

outcomes, where the metric for correct or good is independent from the procedure.

Epistemic Model: A mathematical abstraction of decision-making proposed by the Mar-

quis de Condorcet in 1785, in which the decision is for a binary outcome and one of the

outcomes is assumed to be objectively better. Each voter casts an independent vote param-

eterized by their expertise, a number between 0 and 1.

Epistocracy: A selection process in which the representatives making the decisions are

selected based on their expertise.

Liquid Democracy: A selection process in which citizens either self-select to be represen-

tatives or delegate (potentially transitively) their vote to another citizens for area-specific

decisions with the possibility dynamically delegate or recall one’s vote at any time. In turn,

representatives have a weight equal to the number of citizens they (transitively) represent,

which scales their votes in the representative assembly.

Lottocracy: A selection process in which representatives are drawn randomly from the

population.

Procedural Dimension of Decision-Making: A lens through which examining decision-

making processes that is concerned with the procedures’ intrinsic values.
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Proxy Democracy: A selection process in which citizens either self-select to be represen-

tatives or flexibly nominate self-selected citizen(s) through frequent nomination processes.

In turn, representatives have a weight equal to the number of citizens they represent, which

scales their votes in the representative assembly.
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Chapter 2

How Many Representatives Do We

Need? The Optimal Size of an Epistemic

Congress

However small the Republic may be, the Representatives must be raised to a

certain number, in order to guard against the cabals of a few; and however large

it may be, they must be divided to certain number, in order to guard against the

confusion of a multitude.

– James Madison1

Abstract

Aggregating opinions of a collection of agents is a question of interest to a broad array of

researchers, ranging from economists to statisticians, computer scientists, philosophers, and

political scientists designing democratic institutions. This work investigates the optimal
1In Federalist Paper No. 10 [112].
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number of agents needed to decide on a binary issue under majority rule. We take an epis-

temic view where the issue at hand has a ground truth “correct” outcome and each one of

𝑛 voters votes correctly with a fixed probability, known as their competence level or compe-

tence. These competencies come from a fixed distribution 𝒟. Observing the competencies,

we must choose a specific group that will represent the population. Finally, voters sample

a decision (either correct or not), and the group is correct as long as more than half the

chosen representatives voted correctly. Assuming that we can identify the best experts, i.e.,

those with the highest competence, to form an epistemic congress we find that the optimal

congress size should be linear in the population size. This result is striking because it holds

even when allowing the top representatives to become arbitrarily accurate, choosing the cor-

rect outcome with probabilities approaching 1. We then analyze real-world data, observing

that the actual sizes of representative bodies are much smaller than the optimal ones our

theoretical results suggest. We conclude by examining under what conditions congresses of

sub-optimal sizes would still outperform direct democracy, in which all voters vote. We find

that a small congress would beat direct democracy if the rate at which the societal bias

towards the ground truth decreases with the population size fast enough, and we quantify

the speed needed for constant and polynomial congress sizes.

2.1 Introduction

Modern governments often take the form of a representative democracy, that is, a college of

chosen representatives form a congress to make decisions on behalf of the citizenry. Clearly,

the performance of the congress depends on the number of representatives, and this optimal

number of representatives has been subject to great debate.2 In the Federalist Paper No. 56,

Madison argued that there should be a representative for every thirty thousand inhabitants.
2See activists at https://thirty-thousand.org who advocate for enlarging the congress.
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In response, every ten years between 1785 and 1913, the American congress was enlarged–

in aggregate from 65 to 435–adapting to evolving state populations [220]. However, since

1913, this number of representatives has remained constant, bringing the current number of

inhabitants per representative well below Madison’s objective.

2.1.1 Problem Statement

Quantitative research rationalizing the optimal congress size dates back to at least the 1970s.

Taagepera [221] concluded that the number of representatives should be the cube root of the

population size. These findings are regarded as seminal [123] and have influenced political

decisions and referendums, such as the 2020 Italian referendum to reduce the size of both

chambers from 945 to 600 parliamentary [65, 167].

Yet, recent work using machinery from physics and economics revisited these claims and

showed that the optimal number should be larger, at least proportional to the square root

of the population size [e.g., 12, 167]. In particular, Magdon-Ismail and Xia [157] explored

an epistemic setup that groups voters into pods of size 𝐿, and each pod selects one repre-

sentative. The authors find that the congress size ought to be linear under this model when

voting is cost-less.

Note that our setup for decision-making in a congress on binary issues, applied here in a

democratic context, resembles an ensemble of classifiers in machine learning: classifiers are

“voters” who predict a binary outcome, and they collectively decide, through a majority rule,

on the decision’s outcome [157]. To obtain a good ensemble of classifiers, one can measure

the accuracy of all classifiers and keep only the most accurate ones. Designers have used

these ideas to reduce uncertainty in decisions and increase the classifiers’ performance by

combining their predictions [191, 208, 239].

We can now reformulate our research question in these terms: how many agents should
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we include to maximize the accuracy of the decision?

2.1.2 Contributions

Our contributions span multiple directions: through novel proofs techniques, we strengthen

the pessimistic results of Magdon-Ismail and Xia [157] for congress under the epistemic

approach, finding that even with the ability to identify the most accurate agents to form a

congress, the optimal number of representatives remains linear in the size of the population.

However, we find that all is not lost for congresses of a more practical nature: we follow this

up with comparisons of different sizes and identify conditions for smaller congresses to be

more accurate than when the entire society votes.

In the epistemic setting, voters decide on a binary issue and aim at differentiating be-

tween the ground truth correct choice, the value 1, and its alternative, 0. Each voter has

a competence level in [0, 1] representing the probability they vote correctly. Further, the

competence levels of the population are drawn according to some distribution 𝒟. We take

the idealized view that, given a target size 𝑘, we can identify the 𝑘 most competent voters

in society (that is, the first 𝑘 order statistics from the competence levels 𝑝1, . . . , 𝑝𝑛 where

each 𝑝𝑖 ∼ 𝒟) to form the congress. These members then vote on the issue, and the outcome

is that of the majority. We first observe that, if voters’ competence levels are the expected

values of the order statistics from uniform distribution 𝒰(0, 1), the optimal size of congress

is between (3 − 2
√
2)𝑛 and 𝑛

2
. For arbitrary distributions where the maximum competence

level is bounded away from 1 and the inverse cumulative distribution function is Lipschitz

continuous, the optimal size is Θ(𝑛) with more refined bounds based on the distribution.

The assumption that we can identify the 𝑘 best agents is purposefully idealistic; we give

the congress its best shot at favoring smaller sizes by granting it an unrealistically powerful

selection procedure. This assumption strengthens our claim: the optimal congress size is
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linear with the population size even under the generous assumption that only the most

competent agents represent. Second, our first analysis of the uniform distribution in [0, 1]

allows the best agents’ competence to converge towards 1 as the population size increases,

again providing an unrealistic assumption favoring small congress sizes. Under this extra

generous assumption, we prove that the optimal congress size remains, strikingly, linear with

the population size — later, we generalize this to more realistic distributions.

We then turn to study real-world data on the sizes of countries’ representative bodies.

Here, we notice that congresses in the real world are on the order of the cube root of the

population size, much smaller than the optimal (linear) size our theoretical results suggest.

We then seek to understand when real-world congress sizes can be deemed effective: we

identify conditions on the distribution of competence level under which a smaller congress

outperforms the majority. If the population is unbiased or biased towards 0, a congress

composed of experts with expertise levels above 0.5 trivially outperforms the majority. We

further find that, for a population whose average level of competence is biased above 0.5, a

relatively small congress can still be better than the majority as long as the bias is small

enough. We characterize this threshold for both single-agent and 𝑛𝑟-sized congresses.

2.1.3 Related Work

The use of an epistemic approach, relying on voting to aggregate objective opinions, is

well studied in computational social choice [35]. One particularly significant result is the

Condorcet Jury Theorem [64, 106], which shows that in the limit, a majority vote by an

increasing number of independent voters biased towards the correct outcome will be correct

with probability approaching 1. Note that this epistemic setup models legislative decisions

or referendums in which one choice is inherently more desirable for society — yet, this

correct outcome is not known a priori, and agents are trying to uncover it. Subsequent work
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has studied extensions of the Condorcet Jury Theorem in instances where the voters are

inhomogeneous, dependent, or strategic, as summarized in a survey paper by Nitzan and

Paroush [181].

The first work about the optimal size of parliaments focused on maximizing parliament’s

efficiency [221]. For them, maximizing efficiency was equivalent to minimizing the commu-

nication time spent on discussions with constituents — the authors ultimately stated that

the average time spent talking to the constituents per congress-members should be equal to

the time spent talking to the other congress-members. Hence, Taagepera [221] argued that

the optimal congress size should follow a “cube root law”. Margaritondo [167] revisited this

work and found a flaw in the original proof, arguing that the optimal size under this model

should instead be Θ(
√
𝑛). Empirical papers [13, 221] focused on finding the optimal number

of representatives have used country data to back up the “square root law” result. Jacobs

and Otjes [123], on the other hand, investigate potential causal effects of different congress

sizes.

The work of Auriol and Gary-Bobo [12] also aims to derive the optimal number of rep-

resentatives for a society. However, their model lies in stark contrast to the epistemic one:

they assume that voters have preference-based utilities, with an uninformative prior, and the

representatives are chosen uniformly at random from society. They too reach the conclusion

that the optimal size of congress is proportional to the square root of the population size.

Zhao and Peng [245] look at the optimal number of representatives in a social network. They

consider a set of nodes representative if together they can reach all other nodes in at most 𝑚

steps (where 𝑚 = Θ(log 𝑛) is an exogenous threshold). The goal is to find the minimum size

of such a set. Under a certain class of realistic social networks, they find that the minimum

should be proportional to 𝑛𝛾 for some 1
3
≤ 𝛾 ≤ 5

9
.

Finally, we build upon the work of Magdon-Ismail and Xia [157]. There, the authors

consider a model for representative democracy where agents are grouped into 𝐾 groups of
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sizes 𝐿 and each chooses one representative per group. Importantly, the competencies are

drawn from a distribution 𝒟 only after the agents are grouped. The authors then derive the

group size that maximizes the probability that the representatives make the correct decision.

They show the optimal group size is constant, so the optimal number of representatives

(which is, in the simplest setup, the population size divided by the number of groups) should

then be linear in the population size. The fact that the level of competence is drawn after

grouping people imposes a trade-off between how accurate the representatives will be and how

many representatives (𝑛/𝐿) there are. Indeed, the best agent in each group has a competence

level that is the top order statistic of the distribution with 𝐿 draws. For instance, the top

level of competence from a uniform distribution is in expectation 1− 1
𝐿+1

, which gets large

only if the number of groups 𝑛/𝐿 is small. Importantly, the trade-off implied by the model

favors large congresses. Yet, one could wonder whether the optimal congress size remains

linear if one breaks with this implicit trade-off allowing the highest competencies to become

arbitrarily large. This is precisely the gap we fill.

2.2 Model

Let 𝑛 be the number of voters in the society. Following the epistemic approach, voters

need to choose between two options, 0 and 1, where 1 is assumed to be the ground truth.

Each voter 𝑖 is endowed with a level of expertise (or competence) 𝑝𝑖 ∈ [0, 1], which is the

probability that she votes “correctly” (i.e., votes for option 1). Depending on the instance, we

will sometimes assume that the 𝑝𝑖s are sampled from some distribution 𝒟 whose support is

contained in [0, 1] and other times assume the 𝑝𝑖s are deterministic (perhaps also depending

on 𝑛 which will always be clear from context).

Given 𝑝1, . . . , 𝑝𝑛, we sort voters by decreasing competence level, denoted by 𝑝(1) ≥ · · · ≥

𝑝(𝑛), where 𝑝(𝑖) is the competence level of the 𝑖th best voter. (Note that, for notational
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convenience, this is the reverse of normal order statistics.) Let 𝑋(1), . . . , 𝑋(𝑛) be Bernoulli

random variables denoting their votes, with 𝑋(𝑖) = 1 meaning a correct vote for the 𝑖th best

voter and 0 otherwise; the 𝑋(𝑖)s are conditionally independent given 𝑝(𝑖)s, and Pr[𝑋(𝑖) = 1 |

𝑝(𝑖)] = 𝑝(𝑖).

A congress of size 𝑘 is composed of the 𝑘 best voters in society and makes a correct

decision when a strict majority is correct,
∑︀𝑘

𝑖=1𝑋(𝑖) > 𝑘/2.3 One may envision other rules

to select the congress members, for example, the group representatives analyzed by Magdon-

Ismail and Xia [157]. Here we take the best 𝑘 voters, and this can be seen as a best-case

scenario for accuracy. Strikingly, as we will show, even under this strong assumption, the

optimal number of representatives is already very large, which suggests that the optimal

number would even be larger in more realistic scenarios.

Although the assumption that we can sample the 𝑘 best experts is unrealistic if one

thinks at the democratic context, we could argue that finding the 𝑘 most accurate classifiers

in an ensemble is indeed realistic. In any case, this sampling method favors small congresses

while allowing the sampled congress to reach the maximal probability of making the correct

decision. Our conclusions hence read that despite the generous assumptions, a large number

of voters are needed to maximize a collective’s chance to make a correct decision.

2.3 Optimal Size of an Epistocracy

In this section, we prove theoretical bounds on the optimal size of congress for several natural

distributions. We begin by formally stating our problem.

For fixed voter competencies 𝑝(1) ≥ · · · ≥ 𝑝(𝑛), we define 𝐾⋆ to be the optimal size of

congress, the size 𝑘 that maximizes the probability that the representatives make a correct
3A strict rather than weak majority here corresponds to tie-breaking in favor of the incorrect outcome.

Tie-breaking in the other direction would not asymptotically change our results.
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decision (for convenience breaking ties in favor of an arbitrary odd 𝑘4). Formally,

𝐾⋆ ∈ argmax
1≤𝑘≤𝑛

{︃
Pr

[︃
𝑘∑︁

𝑖=1

𝑋(𝑖) >
𝑘

2

⃒⃒⃒⃒
𝑋(𝑖) ∼ Bern(𝑝(𝑖))

]︃}︃
.

We note that since 𝐾⋆ is a function of the voter competencies, if these competencies are ran-

dom samples, then 𝐾⋆ is a random variable. However, we sometimes assume for tractability

that the competencies match their expectation, that is, 𝑝(𝑖) is exactly equal to the expecta-

tion of the (𝑛+1− 𝑖)’th order statistic of 𝑛 draws from 𝒟. In this case, 𝐾⋆ is a deterministic

value for each 𝑛.

For fixed voter competencies 𝑝(1) ≥ · · · ≥ 𝑝(𝑛), let ℰ 𝑗
𝑘 be the event that exactly 𝑗 of the

top experts out of 𝑘 are correct. Our characterization of the optimal size 𝐾⋆ relies on the

following key lemma.

Lemma 1. For fixed competencies 𝑝(1) ≥ · · · ≥ 𝑝(𝑛), for all odd 𝑘 ≤ 𝑛 with 𝑘 = 2ℓ+ 1,

• If Pr[ℰℓ+1
𝑘 ]

Pr[ℰℓ
𝑘]

<
𝑝(𝑘+1)𝑝(𝑘+2)

(1−𝑝(𝑘+1))(1−𝑝(𝑘+2))
, then 𝐾⋆ ̸= 𝑘.

• If Pr[ℰℓ+1
𝑘 ]

Pr[ℰℓ
𝑘]

>
𝑝(𝑘+1)𝑝(𝑘+2)

(1−𝑝(𝑘+1))(1−𝑝(𝑘+2))
, then 𝐾⋆ ̸= 𝑘 + 2.

The proof of the lemma involves comparing a congress of some specific size 𝑘 to one of

size 𝑘 + 2 (recall that we chose 𝐾⋆ to be odd, so we may as well restrict ourselves to odd

𝑘). Clearly, if the top 𝑘 + 2 experts have a higher chance of being correct than 𝑘, then 𝑘

cannot be optimal (and vice-versa). Importantly, this gives us a sufficient condition to rule

out certain values of 𝑘. For example, if we know that for all 𝑘 < 𝑐 the first condition of the

lemma holds, then that implies 𝐾⋆ ≥ 𝑐.

Proof of Lemma 1. For any 𝑘 ≤ 𝑛, let 𝑞𝑘 =
∑︀𝑘

𝑗=⌊𝑘/2⌋+1 Pr[ℰ
𝑗
𝑘 ] be the probability that a

congress of size 𝑘 will be correct. We have that 𝐾⋆ ∈ argmax𝑘≤𝑛 𝑞𝑘. Fix 𝑝(1) ≥ · · · ≥ 𝑝(𝑛)

4Note that there must always be an optimal 𝑘 that is odd, as for any even 𝑘, due to our strict majority
constraint, 𝑘 − 1 must have overall accuracy at least as high.
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and a specific 𝑘 = 2ℓ + 1. We will show that 𝑞𝑘+2 > 𝑞𝑘 (resp. <) is equivalent to Pr[ℰℓ+1
𝑘 ]

Pr[ℰℓ
𝑘]

<

𝑝(𝑘+1)𝑝(𝑘+2)

(1−𝑝(𝑘+1))(1−𝑝(𝑘+2))
(resp. >). If 𝑞𝑘+2 > 𝑞𝑘 (resp. <), then 𝐾⋆ ̸= 𝑘 (resp. 𝑘 + 2) as that would

imply 𝐾⋆ is not optimal.

Let us now consider 𝑞𝑘+2−𝑞𝑘. The only way the two new experts can change the outcome

from incorrect to correct is when exactly ℓ of the top 𝑘 experts were correct (so the majority

of 𝑘 were incorrect), and the two new experts are correct. Conversely, the only scenario in

which a correct outcome becomes incorrect is when exactly ℓ + 1 of the top 𝑘 experts are

correct while the two new experts are incorrect. Since ℰ 𝑗
𝑘 is the event that exactly 𝑗 of the

top 𝑘 experts out of 𝑛 are correct, we can formally write the above as

𝑞𝑘+2 − 𝑞𝑘 = Pr[ℰ ℓ
𝑘] · 𝑝(𝑘+1)𝑝(𝑘+2)

− Pr[ℰ ℓ+1
𝑘 ] · (1− 𝑝(𝑘+1))(1− 𝑝(𝑘+2)).

Rearranging this yields the two equivalent inequalities previously stated.

For a set of representatives 𝑆 ⊆ [𝑘], let 𝑤(𝑆) =
∏︀

𝑖∈𝑆 𝑝(𝑖) ·
∏︀

𝑖∈[𝑘]∖𝑆(1 − 𝑝(𝑖)) be the

probability that exactly those in 𝑆 are correct (and those in [𝑘] ∖ 𝑆 are incorrect). We then

have the following.

Lemma 2. For each ℰ 𝑗
𝑘,

Pr[ℰ 𝑗
𝑘 ] =

1

𝑘 − 𝑗

∑︁
𝑆⊆[𝑘]

|𝑆|=𝑗+1

𝑤(𝑆)
∑︁
𝑖∈𝑆

1− 𝑝(𝑖)
𝑝(𝑖)

.

Proof. By the definition of ℰ 𝑗
𝑘 , Pr[ℰ

𝑗
𝑘 ] =

∑︀
𝑆⊆[𝑘]
|𝑆|=𝑗

𝑤(𝑆). We then note that

∑︁
𝑆⊆[𝑘]
|𝑆|=𝑗

𝑤(𝑆) =
1

𝑘 − 𝑗

∑︁
𝑆⊆[𝑘]

|𝑆|=𝑗+1

∑︁
𝑖∈𝑆

𝑤(𝑆 ∖ {𝑖})
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because when we count the sets 𝑆 of size 𝑗 by first selecting a set of size 𝑗 + 1 and then

removing one of its 𝑗+1 elements, each set of size 𝑗 is counted exactly 𝑘−𝑗 times. Therefore,

Pr[ℰ 𝑗
𝑘 ] =

1

𝑘 − 𝑗

∑︁
𝑆⊆[𝑘]

|𝑆|=𝑗+1

∑︁
𝑖∈𝑆

𝑤(𝑆 ∖ {𝑖})

=
1

𝑘 − 𝑗

∑︁
𝑆⊆[𝑘]

|𝑆|=𝑗+1

𝑤(𝑆)
∑︁
𝑖∈𝑆

1− 𝑝(𝑖)
𝑝(𝑖)

,

as needed.

Armed with these lemmas, we can now move to proving bounds on the optimal congress

size.

2.3.1 Standard Uniform Distribution

First, we focus on the case where competence levels are drawn from uniform distribution

𝒰(0, 1). For tractability, as discussed in the problem statement, we assume that the com-

petence levels are exactly equal to their expectation, i.e., 𝑝(𝑖) = 𝑛+1−𝑖
𝑛+1

(see e.g., Ma [153]).

In this case, the competence levels of the top experts approach 1 asymptotically. Note that

this is an unrealistic assumption that, again, acts in favor of small congresses. Including

it emphasizes the striking nature of the result: Even with top experts becoming arbitrarily

accurate and the ability to identify the most accurate members of society, the optimal size

of congress remains a constant fraction of the population.

Theorem 1. Suppose 𝑝(𝑖) =
𝑛+1−𝑖
𝑛+1

. Then, (3− 2
√
2) · 𝑛−𝑂(1) ≤ 𝐾⋆ ≤ 1

2
· 𝑛+𝑂(1).

Proof. Recall that we can focus only on odd 𝑘. Fix some odd 𝑘 ≤ 𝑛 where 𝑘 = 2ℓ + 1 for

some non-negative integer ℓ. Our goal will be to compare Pr[ℰℓ+1
𝑘 ]

Pr[ℰℓ
𝑘]

and 𝑝(𝑘+1)𝑝(𝑘+2)

(1−𝑝(𝑘+1))(1−𝑝(𝑘+2))
=

(𝑛−𝑘)(𝑛−𝑘−1)
(𝑘+1)(𝑘+2)

in order to apply Lemma 1.
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By Lemma 2 with 𝑗 = ℓ and using the fact that 𝑘 − ℓ = ℓ+ 1,

Pr[ℰ ℓ
𝑘] =

1

ℓ+ 1

∑︁
𝑆⊆[𝑘]

|𝑆|=ℓ+1

𝑤(𝑆)
∑︁
𝑖∈𝑆

𝑖

𝑛+ 1− 𝑖
. (2.1)

We begin with the lower bound. Let us consider the inner sum of Equation (2.1). We

have that for all 𝑆,

∑︁
𝑖∈𝑆

𝑖

𝑛+ 1− 𝑖
≥ 1

𝑛

∑︁
𝑖∈𝑆

𝑖 ≥ 1

𝑛

ℓ+1∑︁
𝑖=1

𝑖 =
(ℓ+ 1)(ℓ+ 2)

2𝑛

where the first inequality holds because 𝑖 ≥ 1 for all 𝑖 and the second inequality holds because

|𝑆| = ℓ + 1 and 𝑆 ⊆ [𝑘] hence the minimum it could sum to is that of the smallest ℓ + 1

positive integers. As this bound is independent of 𝑆, we can pull it out of the outer sum to

yield

Pr[ℰ ℓ
𝑘] ≥

ℓ+ 2

2𝑛

∑︁
𝑆⊆[𝑘]

|𝑆|=ℓ+1

𝑤(𝑆) =
𝑘 + 3

4𝑛
· Pr[ℰ ℓ+1

𝑘 ]

where the last inequality holds because ℓ + 2 = 𝑘−1
2

+ 2 = 𝑘+3
2

. This allows us to write
Pr[ℰℓ+1

𝑘 ]

Pr[ℰℓ
𝑘]

≤ 4𝑛
𝑘+3

, so in order to invoke the first item of Lemma 1 to show a specific value of 𝑘

is not optimal, we need a sufficient condition for 𝑘 to guarantee

4𝑛

𝑘 + 3
<

(𝑛− 𝑘)(𝑛− 𝑘 − 1)

(𝑘 + 1)(𝑘 + 2)
. (2.2)

Note that Equation (2.2) is implied by 4𝑛 < (𝑛−𝑘−1)2

𝑘+1
which we can rearrange to (𝑘 + 1)2 −

6𝑛(𝑘+1)+𝑛2 > 0. The left hand side of the inequality is a quadratic in (𝑘+1) with roots at

(3±2
√
2) ·𝑛. Since the squared term is positive and hence the quadratic is only non-positive

between the two roots, as long as (𝑘 + 1) < (3− 2
√
2) · 𝑛, the inequality holds. Along with
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the first item of Lemma 1, this implies the desired (3− 2
√
2) · 𝑛−𝑂(1) lower bound.

Next, we will show the upper bound. In the inner summand of Equation (2.1), 𝑖 ∈ [𝑘] so

𝑖 ≤ 𝑘, and hence 𝑖
𝑛+1−𝑖

≤ 𝑘
𝑛+1−𝑘

. This yields

Pr[ℰ ℓ
𝑘] ≤

1

ℓ+ 1

∑︁
𝑆⊆[𝑘]

|𝑆|=ℓ+1

𝑤(𝑆)
∑︁
𝑖∈𝑆

𝑘

𝑛+ 1− 𝑘

≤ 1

ℓ+ 1

∑︁
𝑆⊆[𝑘]

|𝑆|=ℓ+1

𝑤(𝑆) · |𝑆| · 𝑘

𝑛+ 1− 𝑘

=
𝑘

𝑛+ 1− 𝑘

∑︁
𝑆⊆[𝑘]

|𝑆|=ℓ+1

𝑤(𝑆) =
𝑘

𝑛+ 1− 𝑘
Pr[ℰ ℓ+1

𝑘 ].

Here, we get that Pr[ℰℓ+1
𝑘 ]

Pr[ℰℓ
𝑘]

≥ 𝑘
𝑛+1−𝑘

. As with the lower bound, to invoke the second item of

Lemma 1, we need a sufficient condition for

𝑘

𝑛+ 1− 𝑘
>

(𝑛− 𝑘)(𝑛− 𝑘 − 1)

(𝑘 + 1)(𝑘 + 2)
. (2.3)

Equation (2.3) is equivalent to

𝑘(𝑘 + 1)(𝑘 + 2) > (𝑛− 𝑘 − 1)(𝑛− 𝑘)(𝑛− 𝑘 + 1).

As both sides are the product of three consecutive integers, this will be true as long as

𝑛 − 𝑘 − 1 < 𝑘, or equivalently 𝑘 + 2 > 𝑛
2
+ 3

2
. Applying Lemma 1 yields the desired upper

bound.

Hence, we have proved that for competencies equal to the expectation of 𝒰 [0, 1] order

statistics, a constant fraction of the total population is necessary to maximize the probability

the representatives make the correct decision. We conjecture that 𝐾⋆ is in fact close to 𝑛/4

in this set up (see simulations in Figure 2.1).
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Figure 2.1: Optimal value of 𝑘 for 𝒰(0, 1) competence levels following their expectation. The
line of best fit is very close to 𝑛/4.

2.3.2 Distributions Bounded Away From 1

Next, we consider a broad class of distributions that do not allow for arbitrarily accurate

experts. Unlike in the previous section, we do not fix 𝑝(𝑖) to be their expectation; instead,

they are random draws from 𝒟. Under relatively mild conditions, we show that the optimal

size 𝐾⋆ grows linearly in the population size with high probability.

Theorem 2. Let 𝒟 be any continuous distribution supported by [𝐿,𝐻] with cumulative dis-

tribution function 𝐹 (·). If 0 < 𝐿 < 1
2
< 𝐻 < 1, and 𝐹−1(·) is 𝑀-Lipschitz continuous with

0 < 𝑀 < ∞,5 then, with probability at least 1 − 4𝑒−2𝑛𝜀2 the competency draws will yield an

optimal 𝐾⋆ such that

𝑐𝐻𝑛−𝑂(1) ≤ 𝐾⋆ ≤ 𝑐𝐿𝑛+𝑂(1)

for all 𝑛 and 𝜀 > 0, where 𝑐𝐻 = 1− 𝐹

(︂
1

1+
√

1−𝐻
𝐻

+𝑀𝜀

)︂
and 𝑐𝐿 = 1− 𝐹

(︂
1

1+
√

1−𝐿
𝐿

−𝑀𝜀

)︂
.

We remark that 𝐿 ≥ 0 is sufficient for the lower bound 𝑐𝐻𝑛 − 𝑂(1) ≤ 𝐾⋆ to hold and
5This condition is satisfied when the PDF of 𝒟 is lower bounded by 1/𝑀 , which is satisfied by, e.g.,

uniform, normal, and beta distributions truncated to [𝐿,𝐻].
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vice-versa, 𝐻 ≤ 1 is sufficient for the upper bound to hold. Both of these bounds individually

hold with probability at least 1− 2𝑒−2𝑛𝜀2 .

To prove Theorem 2, we will make use of the following well-known concentration inequal-

ity.

Lemma 3 (Dvoretzky–Kiefer–Wolfowitz inequality, see e.g., 169). Let 𝑝(1) ≥ · · · ≥ 𝑝(𝑛) be 𝑛

sorted i.i.d. draws from 𝒟. For every 𝜀 > 0,

Pr

[︂
∀𝑖 ∈ [𝑛],

⃒⃒⃒⃒
𝐹 (𝑝(𝑖))−

𝑛− 𝑖

𝑛

⃒⃒⃒⃒
≤ 𝜀

]︂
≥ 1− 2𝑒−2𝑛𝜀2 .

Lemma 3 implies that, with probability at least 1− 2𝑒−2𝑛𝜀2 , for every 𝑖 ∈ [𝑛],

⃒⃒⃒⃒
𝐹 (𝑝(𝑖))−

𝑛− 𝑖

𝑛

⃒⃒⃒⃒
≤ 𝜀.

Since 𝐹−1 is assumed to be 𝑀 -Lipschitz continuous,

⃒⃒⃒⃒
𝑝(𝑖) − 𝐹−1

(︂
𝑛− 𝑖

𝑛

)︂⃒⃒⃒⃒
≤ 𝑀𝜀. (2.4)

We are now ready to prove Theorem 2.

Proof of Theorem 2. We will show that both the lower bound 𝑐𝐻𝑛 − 𝑂(1) ≤ 𝐾⋆ and the

upper bound 𝐾⋆ ≤ 𝑐𝐿𝑛 + 𝑂(1) each occur with probability at least 1 − 2𝑒−2𝑛𝜀2 which, by

a union bound, proves the desired probability. As previously mentioned, we will only prove

the lower bound here. Fix arbitrary odd 𝑘 and 𝑛 with 𝑘 ≤ 𝑛 where 𝑘 = 2ℓ + 1 for some

non-negative integer ℓ. We will give sufficient conditions as a function of 𝑛 and 𝑘 for which

we can apply Lemma 1.

First, by Lemma 2 with 𝑗 = ℓ, Pr[ℰ ℓ
𝑘] = 1

𝑘−ℓ

∑︀
𝑆⊆[𝑘]

|𝑆|=ℓ+1

𝑤(𝑆)
∑︀

𝑖∈𝑆
1−𝑝(𝑖)
𝑝(𝑖)

. Because the

support of 𝒟 is upper-bounded by 𝐻, 𝑝(𝑖) ≤ 𝐻 for all 𝑖 with probability one. So,
∑︀

𝑖∈𝑆
1−𝑝(𝑖)
𝑝(𝑖)

≥
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(ℓ+1)1−𝐻
𝐻

. Noting that ℓ+1 = 𝑘+1
2

= 𝑘− ℓ and Pr[ℰ ℓ+1
𝑘 ] =

∑︀
𝑆⊆[𝑘]

|𝑆|=ℓ+1

𝑤(𝑆), after rearranging

we have Pr[ℰℓ+1
𝑘 ]

Pr[ℰℓ
𝑘]

≤ 𝐻
1−𝐻

. Further, we note that 𝑝(𝑘+1)𝑝(𝑘+2)

(1−𝑝(𝑘+1))(1−𝑝(𝑘+2))
≥

𝑝2
(𝑘+2)

(1−𝑝(𝑘+2))
2 .

Now, if we want to apply the first item of Lemma 1 to show some 𝑘 is not optimal, it

suffices to require that

𝑝2(𝑘+2)

(1− 𝑝(𝑘+2))2
>

𝐻

1−𝐻
⇐⇒ 𝑝(𝑘+2) >

1

1 +
√︁

1−𝐻
𝐻

. (2.5)

Relying on Equation (2.4), it holds that 𝑝(𝑘+2) ≥ 𝐹−1
(︀
𝑛−𝑘−2

𝑛

)︀
−𝑀𝜀. If we require

𝐹−1

(︂
𝑛− 𝑘 − 2

𝑛

)︂
−𝑀𝜀 >

1

1 +
√︁

1−𝐻
𝐻

, (2.6)

then Equation (2.5) is satisfied and hence so will the condition of Lemma 1, which implies

that such 𝑘 cannot be optimal. Equation (2.6) gives 𝑘
𝑛
≤ 1− 𝐹

(︂
1

1+
√

1−𝐻
𝐻

+𝑀𝜀

)︂
− 2

𝑛
, so

𝐾⋆

𝑛
≥ 1− 𝐹

⎛⎝ 1

1 +
√︁

1−𝐻
𝐻

+𝑀𝜀

⎞⎠− 2

𝑛
.

Multiplying by 𝑛 yields the desired lower bound.

Symmetric to the lower bound, we have that

Pr[ℰ ℓ+1
𝑘 ]

Pr[ℰ ℓ
𝑘]

≥ 𝐿

1− 𝐿
.

Further,
𝑝(𝑘+1)𝑝(𝑘+2)

(1− 𝑝(𝑘+1))(1− 𝑝(𝑘+2))
≤

𝑝2(𝑘+1)

(1− 𝑝(𝑘+1))2
.
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Hence, to prove a certain value 𝑘 + 2 is not optimal using Lemma 1, it suffices that

𝑝2(𝑘+1)

(1− 𝑝(𝑘+1))2
<

1− 𝐿

𝐿
,

which is equivalent to

𝑝(𝑘+1) <
1

1 +
√︁

𝐿
1−𝐿

(2.7)

Now, relying on Equation (2.4), it holds that

𝑝(𝑘+1) ≤ 𝐹−1(
𝑛− 𝑘 − 1

𝑛
) +𝑀𝜀.

If we require

𝐹−1(
𝑛− 𝑘 − 1

𝑛
) +𝑀𝜀 <

1

1 +
√︁

1−𝐿
𝐿

, (2.8)

then Equation (2.7) is satisfied and hence 𝑝𝑘+2
𝑛 − 𝑝𝑘𝑛 < 0, which implies that such 𝑘 cannot

be optimal. Solving Equation (2.8) gives 𝑘
𝑛
> 1− 𝐹

(︂
1

1+
√

1−𝐿
𝐿

−𝑀𝜀

)︂
− 1

𝑛
.

Hence, as long as 𝑘
𝑛
> 1 − 𝐹

(︂
1

1+
√

1−𝐿
𝐿

−𝑀𝜀

)︂
− 1

𝑛
, the condition of Lemma 1 will be

satisfied. Multiplying through by 𝑛 yields the desired upper bound.

This proves that for competencies drawn from an arbitrary distribution whose support

is bounded away from 1, a constant fraction of the total population is needed to maximize

the probability that the representatives make the correct decision on behalf of the entire

population.

We illustrate Theorem 2 by distribution 𝒟 = 𝒰(0.1, 0.9). Letting 𝜀 =
√︁

log𝑛
2𝑛

, one can

check that 0.186𝑛 ≤ 𝐾⋆ ≤ 0.813𝑛 with probability at least 1− 4
𝑛

for sufficiently large 𝑛s.
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2.4 When Epistocracy Outperforms Democracy

Our theoretical results from the previous section suggest that the optimal size of a congress

should be linear in the size of the population. However, this may not be feasible in many

scenarios, and there are other desiderata one must consider in choosing an “optimal” size.

Hence, we now turn to comparing how well different sizes of congresses perform in the

epistemic model.

As a baseline, we will compare the accuracy of a congress to the accuracy of direct

democracy in which all 𝑛 members of society vote. This comparison is well-motivated by

classic results such as the Condorcet Jury Theorem and extensions thereof, which show

that the entire society will converge to the correct answer if and only if the competency

distribution is biased toward the correct answer, that is, E𝑝∼𝒟[𝑝] > 1/2. We aim to find

bounds on how biased this distribution must be for congresses of different sizes to outperform

the entire society.

We now state our problem formally. We will be interested in how the cutoff of the bias of

the competency distribution varies with 𝑛; hence, we will allow the distribution 𝒟 to depend

on 𝑛 by having a distribution 𝒟𝑛 for each 𝑛. We use 𝐹𝑛 and 𝑓𝑛 to denote the CDF and PDF

of 𝒟𝑛 respectively. Let Γ𝑝
𝑛(𝑘) be the gain in probability of correctness by using a congress

of size 𝑘 instead of the entire population, given competence levels 𝑝 = (𝑝(1), . . . , 𝑝(𝑛)):

Γ𝑝
𝑛(𝑘) = Pr

[︃
𝑘∑︁

𝑖=1

𝑋(𝑖) >
𝑘

2

⃒⃒⃒⃒
𝑋(𝑖) ∼ Bern(𝑝(𝑖))

]︃

− Pr

[︃
𝑛∑︁

𝑖=1

𝑋(𝑖) >
𝑛

2

⃒⃒⃒⃒
𝑋(𝑖) ∼ Bern(𝑝(𝑖))

]︃
.

Similar to the definition of 𝐾⋆, Γ𝑝
𝑛(𝑘) is a random variable whose randomness comes from

the random draws of 𝑝𝑖 ∼ 𝒟𝑛. We aim at identifying, for certain values of 𝑘, for what kinds

59



of distributions 𝒟𝑛 we have Γ𝑝
𝑛(𝑘) > 0 with high probability as 𝑛 grows large.

2.4.1 Dictatorship

First, we consider an extreme case: when can a single voter outperform the entire society?

In particular, we identify conditions under which Γ𝑝
𝑛(1) > 0 or Γ𝑝

𝑛(1) < 0. We show that

if the distributions 𝒟𝑛 put high enough probability mass on competence levels near 1 and

its mean E𝒟𝑛 [𝑝] is not much larger than 1/2, then Γ𝑝
𝑛(1) > 0 with high probability as 𝑛

grows large, and Γ𝑝
𝑛(1) < 0 on the contrary. The probability mass conditions are satisfied

by many natural classes of distributions; we give several examples (e.g., uniform and beta

distributions) in Revel et al. [204].

Theorem 3. Let 𝑘 = 1.

• Suppose E𝒟𝑛 [𝑝] ≤ 1
2
+ 𝑎
√︁

log𝑛
𝑛

and 𝑓𝑛(𝑥) ≥ 𝐶(1 − 𝑥)𝛽−1 for 𝑥 ∈ [1 − 𝛿, 1] for some

constants 𝑎, 𝐶, 𝛽, 𝛿 > 0. If 𝑎 <
√︁

E𝒟𝑛 [𝑝(1− 𝑝)] ·min{1, 2/𝛽}, then, with probability at

least 1− 𝑛−Ω(1), Γ𝑝
𝑛(1) > 0.

• Suppose E𝒟𝑛 [𝑝] ≥ 1
2
+ 𝑎
√︁

log𝑛
𝑛

and 𝑓𝑛(𝑥) ≤ 𝐶 for 𝑥 ∈ [1 − 𝛿, 1] for some constants

𝑎, 𝐶, 𝛿 > 0. If 𝑎 > 1√
2
, then with probability at least 1− 𝑛−Ω(1), Γ𝑝

𝑛(1) < 0.

We sketch a proof of the theorem first. When E𝒟𝑛 [𝑝] =
1
2
+ 𝑂(

√︁
log𝑛
𝑛

), by Hoeffding’s

inequality, the entire population makes a correct decision with probability 1 − 𝑂(𝑛−𝑐1) for

some constant 𝑐1, while by our assumption on 𝒟𝑛 the top expert is correct with probability

𝑝(1) = 1−𝑂(𝑛−𝑐2). We identify conditions on 𝒟𝑛 for which 𝑐1 < 𝑐2 or 𝑐1 > 𝑐2.

For the proof, we will need the following lemmas, the first and third are well-known

concentration inequalities, and the second is a standard bound on the standard normal

CDF, which we prove here for completeness.
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Lemma 4 (Berry-Esseen Theorem). Let 𝑋1, . . . , 𝑋𝑛 be independent random variables with

E[𝑋𝑖] = 0, E[𝑋2
𝑖 ] = 𝜎2

𝑖 > 0, and E[|𝑋𝑖|3] = 𝜌𝑖 < ∞. Let 𝐹𝑆𝑛 be the CDF of 𝑆𝑛 =
∑︀𝑛

𝑖=1 𝑋𝑖√∑︀𝑛
𝑖=1 𝜎

2
𝑖

and Φ be the CDF of the standard normal distribution. Then, there exists an absolute

constant 𝐶1 such that

|𝐹𝑆𝑛(𝑥)− Φ(𝑥)| ≤ 𝐶1√︀∑︀𝑛
𝑖=1 𝜎

2
𝑖

max
1≤𝑖≤𝑛

𝜌𝑖
𝜎2
𝑖

, ∀𝑥 ∈ R

Lemma 5 (Bounds on standard normal CDF). Let Φ(𝑥) =
∫︀ 𝑥

−∞
1√
2𝜋
𝑒−𝑡2/2d𝑡 be the CDF of

the standard normal distribution. Then we have for any 𝑥 > 0,

1√
2𝜋

𝑥

𝑥2 + 1
𝑒−𝑥2/2 ≤ Φ(−𝑥) = 1− Φ(𝑥) ≤ 1√

2𝜋

1

𝑥
𝑒−𝑥2/2.

Proof. The right inequality is because

1− Φ(𝑥) =

∫︁ ∞

𝑥

1√
2𝜋

𝑒−
𝑡2

2 d𝑡

≤
∫︁ ∞

𝑥

1√
2𝜋

𝑡

𝑥
𝑒−

𝑡2

2 d𝑡 =
1√
2𝜋

1

𝑥

(︁
−𝑒−

𝑡2

2

)︁ ⃒⃒⃒⃒∞
𝑡=𝑥

=
1√
2𝜋

1

𝑥
𝑒−

𝑥2

2 .

The left inequality is because

1− Φ(𝑥) =

∫︁ ∞

𝑥

1√
2𝜋

𝑒−
𝑡2

2 d𝑡

≥
∫︁ ∞

𝑥

1√
2𝜋

(𝑡2 + 1)2 − 2

(𝑡2 + 1)2
𝑒−

𝑡2

2 d𝑡 =
1√
2𝜋

(︂
− 𝑡

𝑡2 + 1
𝑒−

𝑡2

2

)︂ ⃒⃒⃒⃒∞
𝑡=𝑥

=
1√
2𝜋

𝑥

𝑥2 + 1
𝑒−

𝑥2

2 .
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Lemma 6 (Hoeffding’s Inequality). Let 𝑋1, . . . , 𝑋𝑛 be independent random variables bounded

by 0 ≤ 𝑋𝑖 ≤ 1. Then

Pr

[︃
𝑛∑︁

𝑖=1

𝑋𝑖 ≥ E[
𝑛∑︁

𝑖=1

𝑋𝑖] + 𝑡

]︃
≤ exp(−2𝑡2

𝑛
),

for any 𝑡 > 0. The other direction also holds:

Pr

[︃
𝑛∑︁

𝑖=1

𝑋𝑖 ≤ E[
𝑛∑︁

𝑖=1

𝑋𝑖]− 𝑡

]︃
≤ exp(−2𝑡2

𝑛
).

Now we prove Theorem 3.

Proof of Theorem 3. To simplify notations we write Pr
[︁∑︀𝑘

𝑖=1𝑋(𝑖) >
𝑘
2
| 𝑋(𝑖) ∼ Bern(𝑝(𝑖))

]︁
as Pr

[︁∑︀𝑘
𝑖=1𝑋(𝑖) >

𝑘
2
| 𝑝
]︁
. Recalling the definition of Γ𝑝

𝑛(𝑘), since Pr
[︁∑︀𝑘

𝑖=1𝑋(𝑖) >
𝑘
2
| 𝑝
]︁
=

1− Pr
[︁∑︀𝑘

𝑖=1 𝑋(𝑖) ≤ 𝑘
2
| 𝑝
]︁
, Γ𝑝

𝑛(𝑘) can be equivalently written as

Γ𝑝
𝑛(𝑘) = Pr

[︃
𝑛∑︁

𝑖=1

𝑋(𝑖) ≤
𝑛

2

⃒⃒⃒⃒
𝑝

]︃
− Pr

[︃
𝑘∑︁

𝑖=1

𝑋(𝑖) ≤
𝑘

2

⃒⃒⃒⃒
𝑝

]︃
.

To show either Γ𝑝
𝑛(𝑘) > 0 or Γ𝑝

𝑛(𝑘) < 0, we will compare Pr
[︀∑︀𝑛

𝑖=1𝑋(𝑖) ≤ 𝑛
2
| 𝑝
]︀

with

Pr
[︁∑︀𝑘

𝑖=1 𝑋(𝑖) ≤ 𝑘
2
| 𝑝
]︁
. To do this, we prove the following lemmas:

Lemma 7. Suppose E𝑝∼𝒟𝑛 [𝑝] ≤ 1
2
+ 𝜀𝑛 where 𝜀𝑛 = 𝑎

√︁
log𝑛
𝑛

for some constant 𝑎 > 0. Let

𝜀 = 𝑏
√︁

log𝑛
𝑛

for some constant 𝑏 > 0. Suppose E𝑝∼𝒟𝑛 [𝑝(1− 𝑝)] > 𝜀. Let 𝑐 = 𝑎+𝑏√
E𝑝∼𝒟𝑛 [𝑝(1−𝑝)]−𝜀

.

Then we have: with probability at least 1− 2𝑛−2𝑏2 (over the random draw of 𝑝 ∼ 𝒟𝑛),

Pr

[︃
𝑛∑︁

𝑖=1

𝑋(𝑖) ≤
𝑛

2

⃒⃒⃒⃒
𝑝

]︃
≥ 1√

2𝜋
· 𝑐

√
log 𝑛

(𝑐2 log 𝑛+ 1)
· 1

𝑛𝑐2/2
− 𝐶1√︀

E𝑝∼𝒟𝑛 [𝑝(1− 𝑝)]− 𝜀

1√
𝑛
,

where 𝐶1 is the constant in Berry-Esseen theorem (Lemma 4).

Proof. Given 𝑝 = (𝑝(1), . . . , 𝑝(𝑛)), each 𝑋(𝑖) independently follows Bern(𝑝(𝑖)). We use Berry-
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Esseen theorem (Lemma 4) for 𝑌𝑖 = 𝑋(𝑖) − 𝑝(𝑖), 𝑖 = 1, . . . , 𝑛. Noticing that E[𝑌𝑖] = 0,

𝜎2
𝑖 = E[𝑌 2

𝑖 ] = 𝑝(𝑖)(1 − 𝑝(𝑖)), and 𝜌𝑖 = E[|𝑌𝑖|3] = 𝑝(𝑖)(1 − 𝑝(𝑖))[(1 − 𝑝(𝑖))
2 + 𝑝2(𝑖) ≤ 𝜎2

𝑖 , the

theorem implies

⃒⃒⃒⃒
Pr

[︂∑︀𝑛
𝑖=1 𝑌𝑖∑︀𝑛
𝑖=1 𝜎

2
𝑖

≤ 𝑥

]︂
− Φ(𝑥)

⃒⃒⃒⃒
≤ 𝐶1√︀∑︀𝑛

𝑖=1 𝜎
2
𝑖

max
1≤𝑖≤𝑛

𝜌𝑖
𝜎2
𝑖

≤ 𝐶1√︀∑︀𝑛
𝑖=1 𝜎

2
𝑖

def
= ∆1

for any 𝑥 ∈ R, where Φ(𝑥) is CDF of the standard normal distribution. Therefore,

Pr

[︃
𝑛∑︁

𝑖=1

𝑋(𝑖) ≤
𝑛

2

⃒⃒⃒⃒
𝑝

]︃
= Pr

[︃
𝑛∑︁

𝑖=1

𝑋(𝑖) −
𝑛∑︁

𝑖=1

𝑝(𝑖) ≤
𝑛

2
−

𝑛∑︁
𝑖=1

𝑝(𝑖)

⃒⃒⃒⃒
𝑝

]︃

= Pr

[︃ ∑︀𝑛
𝑖=1 𝑌𝑖√︀∑︀𝑛
𝑖=1 𝜎

2
𝑖

≤
𝑛
2
−
∑︀𝑛

𝑖=1 𝑝(𝑖)√︀∑︀𝑛
𝑖=1 𝜎

2
𝑖

]︃

≥ Φ

(︃
𝑛
2
−
∑︀𝑛

𝑖=1 𝑝(𝑖)√︀∑︀𝑛
𝑖=1 𝜎

2
𝑖

)︃
−∆1 (2.9)

We note that
∑︀𝑛

𝑖=1 𝑝(𝑖) =
∑︀𝑛

𝑖=1 𝑝𝑖 is the sum of 𝑛 i.i.d. draws from distribution 𝒟𝑛, with

mean E[
∑︀𝑛

𝑖=1 𝑝𝑖] = 𝑛E𝑝∼𝒟𝑛 [𝑝]. By Hoeffding’s inequality (Lemma 6), letting 𝑡 = 𝑛𝜀, we have

𝑛∑︁
𝑖=1

𝑝𝑖 ≤ 𝑛E𝑝∼𝒟𝑛 [𝑝] + 𝑛𝜀 (2.10)

with probability at least 1 − exp(−2(𝑛𝜀)2

𝑛
) = 1 − 𝑛−2𝑏2 . Also,

∑︀𝑛
𝑖=1 𝜎

2
𝑖 =

∑︀𝑛
𝑖=1 𝑝𝑖(1 − 𝑝𝑖) is

the sum of 𝑛 i.i.d. draws from a distribution, with mean 𝑛E𝑝∼𝒟𝑛 [𝑝(1− 𝑝)], so

𝑛∑︁
𝑖=1

𝜎2
𝑖 ≥ 𝑛E𝑝∼𝒟𝑛 [𝑝(1− 𝑝)]− 𝑛𝜀 (2.11)

also with probability at least 1− exp(−2(𝑛𝜀)2

𝑛
) = 1− 𝑛2𝑏2 . By a union bound, we have with
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probability at least 1− 2𝑛−2𝑏2 , both Equation (2.10) and Equation (2.11) hold, which imply

Pr

[︃
𝑛∑︁

𝑖=1

𝑋(𝑖) ≤
𝑛

2

⃒⃒⃒⃒
𝑝

]︃
≥ Φ

(︃
𝑛
2
−
∑︀𝑛

𝑖=1 𝑝(𝑖)√︀∑︀𝑛
𝑖=1 𝜎

2
𝑖

)︃
−∆1

≥ Φ

(︃
𝑛
2
− 𝑛E𝑝∼𝒟𝑛 [𝑝]− 𝑛𝜀√︀∑︀𝑛

𝑖=1 𝜎
2
𝑖

)︃
−∆1

≥ Φ

(︃
−𝑛𝜀𝑛 − 𝑛𝜀√︀∑︀𝑛

𝑖=1 𝜎
2
𝑖

)︃
−∆1

≥ Φ

(︃
−𝑛𝜀𝑛 − 𝑛𝜀√︀

𝑛E𝑝∼𝒟𝑛 [𝑝(1− 𝑝)]− 𝑛𝜀

)︃
−∆1

= Φ

(︃
−
√
𝑛

𝜀𝑛 + 𝜀√︀
E𝑝∼𝒟𝑛 [𝑝(1− 𝑝)]− 𝜀

)︃
−∆1

= Φ

⎛⎝−
√
𝑛

(𝑎+ 𝑏)
√︁

log𝑛
𝑛√︀

E𝑝∼𝒟𝑛 [𝑝(1− 𝑝)]− 𝜀

⎞⎠−∆1

= Φ
(︁
−𝑐
√︀

log 𝑛
)︁
−∆1.

Using Lemma 5 with 𝑥 = 𝑐
√
log 𝑛, we get

Pr

[︃
𝑛∑︁

𝑖=1

𝑋(𝑖) ≤
𝑛

2

⃒⃒⃒⃒
𝑝

]︃
≥ Φ

(︁
−𝑐
√︀
log 𝑛

)︁
−∆1 ≥

1√
2𝜋

𝑐
√
log 𝑛

𝑐2 log 𝑛+ 1

1

𝑛𝑐2/2
−∆1,

concluding the proof.

Lemma 8. Suppose E𝑝∼𝒟𝑛 [𝑝] ≥ 1
2
+ 𝜀𝑛 where 𝜀𝑛 = 𝑎

√︁
log𝑛
𝑛

for some constant 𝑎 > 0. Let 𝑏

be a constant with 0 < 𝑏 < 𝑎. Then we have: with probability at least 1 − 𝑛−2𝑏2 (over the

random draw of 𝑝 ∼ 𝒟𝑛),

Pr

[︃
𝑛∑︁

𝑖=1

𝑋(𝑖) ≤
𝑛

2

⃒⃒⃒⃒
𝑝

]︃
≤ 1

𝑛2(𝑎−𝑏)2
.

Proof. We note that
∑︀𝑛

𝑖=1 𝑝(𝑖) =
∑︀𝑛

𝑖=1 𝑝𝑖 is the sum of 𝑛 i.i.d. draws from distribution 𝒟𝑛,
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with mean E[
∑︀𝑛

𝑖=1 𝑝𝑖] = 𝑛E𝑝∼𝒟𝑛 [𝑝]. Let 𝜀 = 𝑏
√︁

log𝑛
𝑛

< 𝜀𝑛. By Hoeffding’s inequality

(Lemma 6), with probability at least 1− exp(−2(𝑛𝜀)2

𝑛
) = 1− 𝑛−2𝑏2 , it holds that

𝑛∑︁
𝑖=1

𝑝𝑖 ≥ 𝑛E𝑝∼𝒟𝑛 [𝑝]− 𝑛𝜀 ≥ 𝑛

2
+ 𝑛𝜀𝑛 − 𝑛𝜀 >

𝑛

2
.

Assuming
∑︀𝑛

𝑖=1 𝑝𝑖 ≥ 𝑛E𝑝∼𝒟𝑛 [𝑝]−𝑛𝜀 holds, we consider the conditional probability Pr[
∑︀𝑛

𝑖=1𝑋(𝑖) ≤
𝑛
2
| 𝑝]. Given 𝑝, 𝑋(𝑖)’s are independent Bernoulli random variables with means E[𝑋(𝑖)] = 𝑝(𝑖).

Hence, by Hoeffding’s inequality (Lemma 6),

Pr

[︃
𝑛∑︁

𝑖=1

𝑋(𝑖) ≤
𝑛

2

⃒⃒⃒⃒
𝑝

]︃
≤ exp

(︂
−
2(
∑︀𝑛

𝑖=1 𝑝(𝑖) −
𝑛
2
)2

𝑛

)︂
≤ exp

(︂
−2(𝑛𝜀𝑛 − 𝑛𝜀)2

𝑛

)︂
= exp

(︀
−2𝑛(𝜀𝑛 − 𝜀)2

)︀
=

1

𝑛2(𝑎−𝑏)2
.

Lemma 9. Suppose the PDF of 𝒟𝑛 satisfies 𝑓𝑛(𝑥) ≥ 𝐶(1− 𝑥)𝛽−1 for 𝑥 ∈ [1− 𝛿, 1] for some

constants 𝐶, 𝛽, 𝛿 > 0. Then, for sufficiently large 𝑛, with probability at least 1 − 𝑛−𝑑 over

the random draw of 𝑝 ∼ 𝒟𝑛,

Pr[𝑋(1) = 0 | 𝑝] ≤
(︂
𝛽𝑑 log 𝑛

𝐶𝑛

)︂1/𝛽

.

Proof. We note that Pr[𝑋(1) = 0 | 𝑝] = 1− 𝑝(1), so for any 𝑥 ∈ [0, 1],

Pr[𝑋(1) = 0 | 𝑝] ≤ 𝑥] = Pr[1− 𝑝(1) ≤ 𝑥] = Pr[𝑝(1) ≥ 1− 𝑥] = 1− Pr[𝑝(1) < 1− 𝑥]

= 1− Pr[max
1≤𝑖≤𝑛

𝑝𝑖 < 1− 𝑥]

= 1− 𝐹𝑛(1− 𝑥)𝑛.

We let 𝑥 be such that 𝐹𝑛(1− 𝑥) = 1− 𝑑 log𝑛
𝑛

, i.e., 𝑥 = 1−𝐹−1
𝑛 (1− 𝑑 log𝑛

𝑛
), then 𝐹𝑛(1− 𝑥)𝑛 =
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(1 − 𝑑 log𝑛
𝑛

)𝑛 ≤ 𝑒−𝑑 log𝑛 = 𝑛−𝑑. So, with probability at least 1 − 𝐹𝑛(1 − 𝑥)𝑛 ≥ 1 − 𝑛−𝑑, we

have

Pr[𝑋(1) = 0 | 𝑝] ≤ 𝑥 = 1− 𝐹−1
𝑛

(︂
1− 𝑑 log 𝑛

𝑛

)︂
.

We then show that 1 − 𝐹−1
𝑛

(︀
1− 𝑑 log𝑛

𝑛

)︀
≤
(︁

𝛽𝑑 log𝑛

𝐶𝑛

)︁1/𝛽
. Define 𝐺(𝑡) = 1 − 𝐹𝑛(1 − 𝑡) for

𝑡 ∈ [0, 1]. This implies

1− 𝐹−1
𝑛 (1− 𝑦) = 𝐺−1(𝑦)

for any 𝑦 ∈ [0, 1]. We note that for 𝑡 sufficiently close to 1, 𝑓𝑛(𝑥) ≥ 𝐶(1 − 𝑥)𝛽−1 for any

𝑥 ∈ [1− 𝑡, 1], implying

𝐺(𝑡) = 1− 𝐹𝑛(1− 𝑡) =

∫︁ 1

1−𝑡

𝑓𝑛(𝑥)d𝑥 ≥
∫︁ 1

1−𝑡

𝐶(1− 𝑥)𝛽−1d𝑥 =

∫︁ 𝑡

0

𝐶𝑢𝛽−1d𝑢 =
𝐶

𝛽
𝑡𝛽.

Let 𝐺(𝑡) = 𝐶
𝛽
𝑡𝛽. We have 𝐺(𝑡) ≥ 𝐺(𝑡) and 𝐺−1(𝑦) = (

𝛽

𝐶
𝑦)1/𝛽. Since 𝐺(𝑡) ≥ 𝐺(𝑡) and 𝐺−1(𝑦)

is increasing in 𝑦, we have

𝐺(𝑡) ≥ 𝐺(𝑡) =⇒ 𝐺−1(𝐺(𝑡)) ≥ 𝑡 =⇒ 𝐺−1(𝑦) ≥ 𝐺−1(𝑦).

Therefore,

1− 𝐹−1
𝑛 (1− 𝑦) = 𝐺−1(𝑦) ≤ 𝐺−1(𝑦) = (

𝛽

𝐶
𝑦)1/𝛽.

Letting 𝑦 = 𝑑 log𝑛
𝑛

, we conclude that

Pr[𝑋(1) = 0 | 𝑝] ≤ 1− 𝐹−1

(︂
1− 𝑑 log 𝑛

𝑛

)︂
≤
(︂
𝛽𝑑 log 𝑛

𝐶𝑛

)︂1/𝛽

.

Lemma 10. Suppose the PDF of 𝒟𝑛 satisfies 𝑓𝑛(𝑥) ≤ 𝐶 for 𝑥 ∈ [1−𝛿, 1] for some constants

𝐶, 𝛿 > 0. Then, for sufficiently large 𝑛, with probability at least 1 − 𝑛−𝑑 over the random

66



draw of 𝑝 ∼ 𝒟𝑛,

Pr[𝑋(1) = 0 | 𝑝] ≥ 1

𝐶𝑛𝑑+1
.

Proof. We note that Pr[𝑋(1) = 0 | 𝑝] = 1− 𝑝(1), so for any 𝑥 ∈ [0, 1],

Pr[Pr[𝑋(1) = 0 | 𝑝] ≥ 𝑥] = Pr[1− 𝑝(1) ≥ 𝑥] = Pr[𝑝(1) ≤ 1− 𝑥] = Pr[max
1≤𝑖≤𝑛

𝑝𝑖 < 1− 𝑥]

= 𝐹𝑛(1− 𝑥)𝑛.

We let 𝑥 = 1
𝐶𝑛𝑑+1 . Then for sufficiently large 𝑛, 𝑥 ≥ 1 − 𝛿, and hence 𝑓𝑛(𝑡) ≤ 𝐶 for

𝑡 ∈ [1− 𝑥, 1], which implies

1− 𝐹𝑛(1− 𝑥) =

∫︁ 1

1−𝑥

𝑓𝑛(𝑡)d𝑡 ≤
∫︁ 1

1−𝑥

𝐶d𝑡 = 𝑥𝐶 =
1

𝑛𝑑+1
,

or equivalently

𝐹𝑛(1− 𝑥) ≥ 1− 1

𝑛𝑑+1
.

Using inequality (1− 𝑥
𝑛
)𝑛 ≥ 1− 𝑥 (for 𝑛 ≥ 1, 0 ≤ 𝑥 ≤ 𝑛), we get

𝐹𝑛(1− 𝑥)𝑛 ≥
(︂
1− 1

𝑛𝑑+1

)︂𝑛

≥ 1− 1

𝑛𝑑
.

Therefore, with probability at least 1− 1
𝑛𝑑 , Pr[𝑋(1) = 0 | 𝑝] ≥ 𝑥 = 1

𝐶𝑛𝑑+1 holds.

To prove Γ𝑝
𝑛(1) > 0, we use Lemma 7 and Lemma 9 to get

Γ𝑝
𝑛(1) = Pr

[︃
𝑛∑︁

𝑖=1

𝑋(𝑖) ≤
𝑛

2

⃒⃒⃒⃒
𝑝

]︃
− Pr

[︂
𝑋(1) = 0

⃒⃒⃒⃒
𝑝

]︂

≥ 1√
2𝜋

𝑐
√
log 𝑛

(𝑐2 log 𝑛+ 1)

1

𝑛𝑐2/2
− 𝐶1√︀

E𝑝∼𝒟𝑛 [𝑝(1− 𝑝)]− 𝜀

1√
𝑛
−
(︂
𝛽𝑑 log 𝑛

𝐶𝑛

)︂1/𝛽

with probability at least 1−2𝑛−2𝑏2 −𝑛−𝑑, where 𝑐 = 𝑎+𝑏√
E𝑝∼𝒟𝑛 [𝑝(1−𝑝)]−𝜀

, E𝑝∼𝒟𝑛 [𝑝] ≤ 1
2
+𝜀𝑛 with
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𝜀𝑛 = 𝑎
√︁

log𝑛
𝑛

for some 𝑎 > 0, and 𝜀 = 𝑏
√︁

log𝑛
𝑛

for some 𝑏 > 0, and 𝐶 and 𝛽 are constants. If

𝑐2/2 is a constant such that

𝑐2/2 < min
{︀
1/2, 1/𝛽

}︀
,

then Γ𝑝
𝑛(1) = 𝑂( 1

𝑛𝑐2/2
) > 0 for sufficiently large 𝑛. Requiring 𝑐2/2 < min

{︀
1/2, 1/𝛽

}︀
is

equivalent to requiring

𝑎+ 𝑏 <
√︁

(E𝑝∼𝒟𝑛 [𝑝(1− 𝑝)]− 𝜀) ·min{1, 2/𝛽},

which can be satisfied when 𝑎 and 𝑏 are constants such that 𝑎 <
√︁

E𝑝∼𝒟𝑛 [𝑝(1− 𝑝)] ·min{1, 2/𝛽},

0 < 𝑏 <
√︁

E𝑝∼𝒟𝑛 [𝑝(1− 𝑝)] ·min{1, 2/𝛽} − 𝑎, and 𝑛 is sufficiently large (so 𝜀 = 𝑏
√︁

log𝑛
𝑛

is

sufficiently small).

To prove Γ𝑝
𝑛(1) < 0, we use Lemma 8 and Lemma 10 to get

Γ𝑝
𝑛(1) = Pr

[︃
𝑛∑︁

𝑖=1

𝑋(𝑖) ≤
𝑛

2

⃒⃒⃒⃒
𝑝

]︃
− Pr

[︂
𝑋(1) = 0

⃒⃒⃒⃒
𝑝

]︂
≤ 1

𝑛2(𝑎−𝑏)2
− 1

𝐶𝑛𝑑+1

with probability at least 1 − 𝑛−2𝑏2 − 𝑛−𝑑, where E𝑝∼𝒟𝑛 [𝑝] ≥ 1
2
+ 𝜀𝑛 with 𝜀𝑛 = 𝑎

√︁
log𝑛
𝑛

for

some constant 𝑎 > 0, with any 𝑏 < 𝑎, and 𝐶 is a constant. When

2(𝑎− 𝑏)2 > 𝑑+ 1,

we have Γ𝑝
𝑛(1) = −𝑂( 1

𝑛𝑑+1 ) < 0 for sufficiently large 𝑛. The inequality 2(𝑎 − 𝑏)2 > 𝑑 + 1 is

satisfied when 𝑎 > 1√
2

and 𝑏, 𝑑 are sufficiently close to 0.
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Figure 2.2: Estimates of Pr[
∑︀𝑘

𝑖=1 𝑋(𝑖) > 𝑘
2

| 𝑝] (Representative Democracy) and
Pr[
∑︀𝑛

𝑖=1𝑋(𝑖) > 𝑛
2
| 𝑝] (Direct Democracy) as a function of the population size for differ-

ent values of 𝜀𝑛, with 𝑘 = 𝑛0.36 and 𝒟𝑛 = 𝒰 [0.4 + 𝜀𝑛, 0.6]. For large 𝜀𝑛, the population size
needs to reach a critical mass for the congress to outperform direct democracy.

2.4.2 Real-world and Polynomial-sized Congress

We now turn our attention to more practical congress sizes. As discussed in the introduc-

tion, prior work has suggested that the size of congress should be near the cube root of

the population size. Exploring real-world data for 240 legislatures (the data comes from

https://en.wikipedia.org/wiki/List_of_legislatures_by_number_of_members; we consid-

ered the number of representatives to be the total number of representatives in both cham-

bers), we re-ran regression analysis of Auriol and Gary-Bobo [12] on the log of the congress

sizes of many countries compared to the log of the population size, which yields a slope of 0.36

(with intercept −0.65 and coefficient of determination 𝑅2 = 0.85)), suggesting 𝑘 = Θ(𝑛0.36).

See results in Figure 2.3.

Next, we numerically investigate how congresses of this size perform compared to direct

democracy with different levels of bias. We consider 𝑘 = 𝑛0.36 and 𝒟𝑛 = 𝒰(𝐿 + 𝜀𝑛, 1 − 𝐿)

such that E𝒟𝑛 [𝑝] =
1+𝜀𝑛
2

. So the society is slightly biased toward the correct answer. We

identify sequences (𝜀𝑛)
∞
𝑛=1 such that a congress of size 𝑘 outperforms direct democracy for

sufficiently large 𝑛.

The simulations were run on a MacBook Pro as follows: for a given distribution, we

sample 𝑛 competencies and votes associated with these competencies. We perform two ma-

jority votes — with all the voters and with the top 𝑘 voters. Repeating this operation 1, 000
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Figure 2.3: Congress sizes in 240 legislatures (top) and log-log plot of the Congress size as a
function of the Population size (bottom). The regression line yields log 𝑘 = 0.36 log 𝑛−0.65,
or 𝑘 = 𝑐𝑛0.36, with a coefficient of determination 𝑅2 = 0.85. Note that in the top plot,
we only show a handful of countries for obvious space constraints. In reality, the United
States is not the country with the largest congress (it has 535 congress-members per our
computation, merging both chambers).
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times, we estimate the probabilities that the majority of all voters (Direct Democracy) and

𝑘 voters (Representative Democracy) are correct. Figure 2.2 displays the probabilities and

95% confidence intervals for different population sizes, with 𝐿 = 0.4. Additional simulations

are located in Figure 2.4.

Unsurprisingly, the larger the bias, the smaller the gain. For 𝐿 ≤ 0.1 and a bias of

order
√︀

log 𝑛/𝑛, there is a no gain from relying on the congress, while if the bias is of order√︀
log log 𝑛/𝑛, there is positive gain. Yet, for 𝐿 = 0.4, a bias of order

√︀
log 𝑛/𝑛 systematically

yields a strictly negative gain for 𝑛 ≤ 106.

Let us now formalize and prove this result for general distributions. If the average

competence level of the population, E𝒟𝑛 [𝑝], is larger than 1
2

by a constant margin, then both

the entire population and a congress of size 𝑛𝑟 will be correct with probabilities that are

exponentially close to 1. Hence, again, to make things more interesting, we are concerned

with the case where E𝒟𝑛 [𝑝] =
1
2
+ 𝜀𝑛 with 0 < 𝜀𝑛 < 𝑜(1). We identify conditions on 𝜀𝑛, 𝑛

and 𝒟𝑛 under which Γ𝑝
𝑛(𝑘) > 0 or Γ𝑝

𝑛(𝑘) < 0.

Theorem 4. Let 𝑘 = 𝑛𝑟 for some constant 0 < 𝑟 < 1.

• Suppose E𝒟𝑛 [𝑝] ≤ 1
2
+ 𝑎
√︁

log𝑛
𝑛

, and 1−𝐹𝑛(
1
2
+𝛼
√︁

log 𝑘
𝑘

) ≥ 𝑘
𝑛
+Ω(

√︁
log𝑛
𝑛

) for some con-

stants 𝑎, 𝛼 > 0. If 𝑎 <
√︀

E𝒟𝑛 [𝑝(1− 𝑝)] and 𝛼 > 𝑎

2
√

𝑟·E𝒟𝑛 [𝑝(1−𝑝)]
, then, with probability

at least 1− 𝑛−Ω(1), Γ𝑝
𝑛(𝑘) > 0.

• Suppose E𝒟𝑛 [𝑝] ≥ 1
2
+ 𝑎
√︁

log𝑛
𝑛

and 1 − 𝐹𝑛(
1
2
+ 𝛼

√︁
log 𝑘
𝑘

) ≤ 1
𝑛1+Ω(1) for some constants

𝑎, 𝛼 > 0. If 𝛼 < 1
2

and 𝑎 >
√
𝑟𝛼, then, with probability at least 1− 𝑛−Ω(1), Γ𝑝

𝑛(𝑘) < 0.

Intuitively, in the first item above, the condition on the CDF,

1− 𝐹𝑛(
1

2
+ 𝛼

√︂
log 𝑘

𝑘
) ≥ 𝑘

𝑛
+ Ω(

√︂
log 𝑛

𝑛
),

and the condition on 𝛼 imply that 𝒟𝑛 assigns large enough probability to high competence
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levels 𝑝 > 1
2
+ 𝛼

√︁
log 𝑘
𝑘

, so a congress of size 𝑛𝑟 will be composed of competent enough

experts and hence will beat the entire population. The conditions in the second item are in

the opposite direction.

We remark that the above conditions on the relation between 𝑎 and 𝛼 are sharp: for

distributions 𝒟𝑛 that are concentrated around 1/2, we have E𝒟𝑛 [𝑝(1− 𝑝)] ≈ 1/4, so the first

condition becomes 𝛼 > 𝑎

2
√

𝑟·1/4
= 𝑎√

𝑟
, or equivalently 𝑎 <

√
𝑟𝛼, while the second condition

is the opposite: 𝑎 >
√
𝑟𝛼.

Finally, we note that the conditions in Theorem 4 on the distributions 𝒟𝑛 are satisfied

by many natural classes of distributions, e.g., beta distributions and normal distributions

truncated to [0, 1]. We identify more examples in Revel et al. [204].

Next, we prove Theorem 4. Similar to the proof of Theorem 3, we write Γ𝑝
𝑛(𝑘) as

Γ𝑝
𝑛(𝑘) = Pr

[︃
𝑛∑︁

𝑖=1

𝑋(𝑖) ≤
𝑛

2

⃒⃒⃒⃒
𝑝

]︃
− Pr

[︃
𝑘∑︁

𝑖=1

𝑋(𝑖) ≤
𝑘

2

⃒⃒⃒⃒
𝑝

]︃
.

To show either Γ𝑝
𝑛(𝑘) > 0 or Γ𝑝

𝑛(𝑘) < 0, we will compare Pr
[︀∑︀𝑛

𝑖=1𝑋(𝑖) ≤ 𝑛
2
| 𝑝
]︀

with

Pr
[︁∑︀𝑘

𝑖=1 𝑋(𝑖) ≤ 𝑘
2
| 𝑝
]︁
.

Lemma 11. Suppose 1 − 𝐹𝑛(
1
2
+ 𝛼

√︁
log 𝑘
𝑘

) ≥ 𝑘
𝑛
+ 𝜀 where 𝜀 = 𝑏

√︁
log𝑛
𝑛

for some constants

𝛼, 𝑏 > 0. Then, with probability at least 1− 2𝑛−2𝑏2 (over the random draw of 𝑝 ∼ 𝒟𝑛),

Pr

[︃
𝑘∑︁

𝑖=1

𝑋(𝑖) ≤
𝑘

2

⃒⃒⃒⃒
𝑝

]︃
≤ 1

𝑘2𝛼2 .

Proof. By DKW inequality (Lemma 2.5), with probability at least 1− 2𝑒−2𝑛𝜀2 = 1− 2𝑛−2𝑏2

over the random draw of 𝑝 ∼ 𝒟𝑛, it holds that |𝐹𝑛(𝑝(𝑖)) − 𝑛−𝑖
𝑛
| ≤ 𝜀 for every 𝑖 ∈ [𝑛]. In

particular, for 𝑖 = 1, . . . , 𝑘, we have

𝐹𝑛(𝑝(𝑖)) ≥
𝑛− 𝑖

𝑛
− 𝜀 ≥ 𝑛− 𝑘

𝑛
− 𝜀 = 1− 𝑘

𝑛
− 𝜀,

72



This implies

1− 𝐹𝑛(𝑝(𝑖)) ≤
𝑘

𝑛
+ 𝜀 ≤ 1− 𝐹𝑛(

1

2
+ 𝛼

√︂
log 𝑘

𝑘
)

and hence

𝑝(𝑖) ≥
1

2
+ 𝛼

√︂
log 𝑘

𝑘
.

Assuming the above inequalities hold, we consider the conditional probability Pr
[︁∑︀𝑘

𝑖=1𝑋(𝑖) ≤ 𝑘
2
| 𝑝
]︁
.

Given 𝑝, the 𝑋(𝑖)’s are independent draws from Bern(𝑝(𝑖)) distributions, with means E[𝑋(𝑖)] =

𝑝(𝑖), hence, by Hoeffding’s inequality (Lemma 6),

Pr

[︃
𝑘∑︁

𝑖=1

𝑋(𝑖) ≤
𝑘

2

⃒⃒⃒⃒
𝑝

]︃
≤ exp

(︃
−
2(
∑︀𝑘

𝑖=1 𝑝(𝑖) −
𝑘
2
)2

𝑘

)︃
.

Plugging in 𝑝(𝑖) ≥ 1
2
+ 𝛼

√︁
log 𝑘
𝑘

, we get

Pr

[︃
𝑘∑︁

𝑖=1

𝑋(𝑖) ≤
𝑘

2

⃒⃒⃒⃒
𝑝

]︃
≤ exp

(︃
−
2(𝑘

2
+ 𝛼

√
𝑘 log 𝑘 − 𝑘

2
)2

𝑘

)︃
=

1

𝑘2𝛼2 .

Proof of the first item of Theorem 4. By Lemma 7 and Lemma 11, we have

Γ𝑝
𝑛(𝑘) = Pr

[︃
𝑛∑︁

𝑖=1

𝑋(𝑖) ≤
𝑛

2

⃒⃒⃒⃒
𝑝

]︃
− Pr

[︃
𝑘∑︁

𝑖=1

𝑋(𝑖) ≤
𝑘

2

⃒⃒⃒⃒
𝑝

]︃

≥ 1√
2𝜋

𝑐
√
log 𝑛

(𝑐2 log 𝑛+ 1)

1

𝑛𝑐2/2
− 𝐶1√︀

E𝑝∼𝒟𝑛 [𝑝(1− 𝑝)]− 𝜀

1√
𝑛
− 1

𝑘2𝛼2

with probability at least 1 − 4𝑛−2𝑏2 , where 𝑐 = 𝑎+𝑏√
E𝑝∼𝒟𝑛 [𝑝(1−𝑝)]−𝜀

, E𝑝∼𝒟𝑛 [𝑝] ≤ 1
2
+ 𝜀𝑛 with

𝜀𝑛 = 𝑎
√︁

log𝑛
𝑛

for some 𝑎 > 0, and 𝜀 = 𝑏
√︁

log𝑛
𝑛

for some 𝑏 > 0, and 𝛼 is a constant. Since
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𝑘 = 𝑛𝑟,

Γ𝑝
𝑛(𝑘) ≥

1√
2𝜋

𝑐
√
log 𝑛

(𝑐2 log 𝑛+ 1)

1

𝑛𝑐2/2
− 𝐶1√︀

E𝑝∼𝒟𝑛 [𝑝(1− 𝑝)]− 𝜀

1√
𝑛
− 1

𝑛2𝑟𝛼2

When 𝑐2/2 < 1/2 and 𝑐2/2 < 2𝑟𝛼2, we have Γ𝑝
𝑛(𝑘) = 𝑂( 1

𝑛𝑐2/2
) > 0 for sufficiently large

𝑛. The latter requirement 𝑐2/2 < 2𝑟𝛼2 is satisfied when 𝛼 > 𝑐
2
√
𝑟
. The former requirement

𝑐2/2 < 1/2 is equivalent to 𝑎+ 𝑏 <
√︀
E𝑝∼𝒟𝑛 [𝑝(1− 𝑝)]− 𝜀}, which is satisfied when constants

𝑎 <
√︀

E𝑝∼𝒟𝑛 [𝑝(1− 𝑝)]}, 0 < 𝑏 <
√︀

E𝑝∼𝒟𝑛 [𝑝(1− 𝑝)]} − 𝑎, and 𝑛 is sufficiently large.

Lemma 12. Suppose 1 − 𝐹𝑛(
1
2
+ 𝛼

√︁
log 𝑘
𝑘

) ≤ 1
𝑛1+Ω(1) for some constant 𝛼 > 0, and suppose

E𝑝∼𝒟𝑛 [𝑝] ≥ 1
2
+ 𝜀𝑛 with 𝜀𝑛 = 𝑎

√︁
log𝑛
𝑛

for some constant 𝑎 > 0. Then, with probability at least

1− 1
𝑛Ω(1) (over the random draw of 𝑝 ∼ 𝒟𝑛),

Pr

[︃
𝑘∑︁

𝑖=1

𝑋(𝑖) ≤
𝑘

2

⃒⃒⃒⃒
𝑝

]︃
≥ 1√

2𝜋
· 1− 𝑜(1)

2𝛼
√
log 𝑘

· 1

𝑘
2𝛼2

1−𝑜(1)

− 2𝐶1

(1− 𝑜(1))
√
𝑘
,

where 𝐶1 is the constant in Berry-Esseen theorem (Lemma 4).

Proof. Given 𝑝(1), . . . , 𝑝(𝑘), each 𝑋(𝑖) independently follows Bern(𝑝(𝑖)). We use Berry-Esseen

theorem (Lemma 4) for 𝑌𝑖 = 𝑋(𝑖)−𝑝(𝑖), 𝑖 = 1, . . . , 𝑘. Noticing that E[𝑌𝑖] = 𝑝(𝑖), 𝜎2
𝑖 = E[𝑌 2

𝑖 ] =

𝑝(𝑖)(1− 𝑝(𝑖)), and 𝜌𝑖 = E[|𝑌𝑖|3] = 𝑝(𝑖)(1− 𝑝(𝑖))[(1− 𝑝(𝑖))
2 + 𝑝2(𝑖)] ≤ 𝜎2

𝑖 , the theorem implies

⃒⃒⃒⃒
⃒Pr
[︃∑︀𝑘

𝑖=1 𝑌𝑖∑︀𝑘
𝑖=1 𝜎

2
𝑖

≤ 𝑥

]︃
− Φ(𝑥)

⃒⃒⃒⃒
⃒ ≤ 𝐶1√︁∑︀𝑘

𝑖=1 𝜎
2
𝑖

max
1≤𝑖≤𝑘

𝜌𝑖
𝜎2
𝑖

≤ 𝐶1√︁∑︀𝑘
𝑖=1 𝜎

2
𝑖
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for any 𝑥 ∈ R, where Φ(𝑥) is CDF of the standard normal distribution. Therefore,

Pr

[︃
𝑘∑︁

𝑖=1

𝑋(𝑖) ≤
𝑘

2

⃒⃒⃒⃒
𝑝

]︃
= Pr

[︃
𝑘∑︁

𝑖=1

𝑋(𝑖) −
𝑘∑︁

𝑖=1

𝑝(𝑖) ≤
𝑘

2
−

𝑘∑︁
𝑖=1

𝑝(𝑖)

⃒⃒⃒⃒
𝑝

]︃

= Pr

⎡⎣ ∑︀𝑘
𝑖=1 𝑌𝑖√︁∑︀𝑘
𝑖=1 𝜎

2
𝑖

≤
𝑘
2
−
∑︀𝑘

𝑖=1 𝑝(𝑖)√︁∑︀𝑘
𝑖=1 𝜎

2
𝑖

⎤⎦
≥ Φ

⎛⎝ 𝑘
2
−
∑︀𝑘

𝑖=1 𝑝(𝑖)√︁∑︀𝑘
𝑖=1 𝜎

2
𝑖

⎞⎠− 𝐶1√︁∑︀𝑘
𝑖=1 𝜎

2
𝑖

.

We consider
∑︀𝑘

𝑖=1 𝑝(𝑖). By the assumption that 1 − 𝐹𝑛(
1
2
+ 𝛼

√︁
log 𝑘
𝑘

) = Pr𝑝𝑖∼𝒟𝑛 [𝑝𝑖 >

1
2
+ 𝛼

√︁
log 𝑘
𝑘

] = 1
𝑛1+Ω(1) , using a union bound we have with probability at least 1− 𝑛 1

𝑛1+Ω(1) =

1− 1
𝑛Ω(1) , all 𝑝𝑖’s (for 𝑖 = 1, . . . , 𝑛) satisfy 𝑝𝑖 ≤ 1

2
+ 𝛼

√︁
log 𝑘
𝑘

. Hence,

𝑘∑︁
𝑖=1

𝑝(𝑖) ≤ 𝑘(
1

2
+ 𝛼

√︂
log 𝑘

𝑘
) =

𝑘

2
+ 𝛼

√︀
𝑘 log 𝑘,

which implies

Pr

[︃
𝑘∑︁

𝑖=1

𝑋(𝑖) ≤
𝑘

2

⃒⃒⃒⃒
𝑝

]︃
≥ Φ

⎛⎝ 𝑘
2
− (𝑘

2
+ 𝛼

√
𝑘 log 𝑘)√︁∑︀𝑘

𝑖=1 𝜎
2
𝑖

⎞⎠− 𝐶1√︁∑︀𝑘
𝑖=1 𝜎

2
𝑖

= Φ

⎛⎝−𝛼
√
𝑘 log 𝑘√︁∑︀𝑘
𝑖=1 𝜎

2
𝑖

⎞⎠− 𝐶1√︁∑︀𝑘
𝑖=1 𝜎

2
𝑖

(2.12)

We then consider
∑︀𝑘

𝑖=1 𝜎
2
𝑖 =

∑︀𝑘
𝑖=1 𝑝(𝑖)(1 − 𝑝(𝑖)) =

∑︀𝑘
𝑖=1 𝑝(𝑖) −

∑︀𝑘
𝑖=1 𝑝

2
(𝑖). We note that

the 𝑝𝑖’s (for 𝑖 = 1, . . . , 𝑛) are 𝑛 i.i.d. random draws from distribution 𝒟𝑛 whose mean is

E𝑝∼𝒟𝑛 [𝑝] ≥ 1
2
+ 𝜀𝑛, by Hoeffding’s inequality, their average satisfies

1

𝑛

𝑛∑︁
𝑖=1

𝑝𝑖 ≥ E𝑝∼𝒟𝑛 [𝑝]− 𝜀 ≥ 1

2
+ 𝜀𝑛 − 𝜀,
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with probability at least 1 − exp(−2𝑛𝜀2). We choose 𝜀 = 𝑂(
√︁

log𝑛
𝑛

) so the probability is

1 − 1
𝑛Ω(1) . We also note that 1

𝑛

∑︀𝑛
𝑖=1 𝑝𝑖 ≤

1
𝑘

∑︀𝑘
𝑖=1 𝑝(𝑖) because 𝑝(1), . . . , 𝑝(𝑘) are the 𝑘 largest

values in 𝑝1, . . . , 𝑝𝑛. Therefore,

𝑘∑︁
𝑖=1

𝑝(𝑖) ≥
𝑘

𝑛

𝑛∑︁
𝑖=1

𝑝𝑖 ≥ 𝑘(
1

2
+ 𝜀𝑛 − 𝜀).

Moreover, since previously we had 𝑝𝑖 ≤ 1
2
+ 𝛼

√︁
log𝑛
𝑛

for all 𝑖 = 1, . . . , 𝑛, it holds that

𝑘∑︁
𝑖=1

𝑝2(𝑖) ≤ 𝑘

(︃
1

2
+ 𝛼

√︂
log 𝑛

𝑛

)︃2

= 𝑘(
1

4
+ 𝑜(1)).

Therefore,

𝑘∑︁
𝑖=1

𝜎2
𝑖 =

𝑘∑︁
𝑖=1

𝑝(𝑖) −
𝑘∑︁

𝑖=1

𝑝2(𝑖) ≥ 𝑘(
1

2
+ 𝜀𝑛 − 𝜀)− 𝑘(

1

4
+ 𝑜(1)) = 𝑘(

1

4
− 𝑜(1)).

Plugging
∑︀𝑘

𝑖=1 𝜎
2
𝑖 ≥ 𝑘(1

4
− 𝑜(1)) into Equation (2.12), we get

Pr

[︃
𝑘∑︁

𝑖=1

𝑋(𝑖) ≤
𝑘

2

⃒⃒⃒⃒
𝑝

]︃
≥ Φ

⎛⎝ −𝛼
√
𝑘 log 𝑘√︁

𝑘(1
4
− 𝑜(1))

⎞⎠− 𝐶1√︁
𝑘(1

4
− 𝑜(1))

= Φ

(︂
−2𝛼

√
log 𝑘

1− 𝑜(1)

)︂
− 2𝐶1

(1− 𝑜(1))
√
𝑘
.

Using Lemma 5 with 𝑥 = 2𝛼
√
log 𝑘

1−𝑜(1)
, we have

Φ

(︂
−2𝛼

√
log 𝑘

1− 𝑜(1)

)︂
≥ 1√

2𝜋

2𝛼
√
log 𝑘(1− 𝑜(1))

4𝛼2 log 𝑘 + 1
𝑒−

4𝛼2 log 𝑘
2(1−𝑜(1)) =

1√
2𝜋

1− 𝑜(1)

2𝛼
√
log 𝑘

1

𝑘
2𝛼2

1−𝑜(1)
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which implies

Pr

[︃
𝑘∑︁

𝑖=1

𝑋(𝑖) ≤
𝑘

2

⃒⃒⃒⃒
𝑝

]︃
≥ 1√

2𝜋

1− 𝑜(1)

2𝛼
√
log 𝑘

1

𝑘
2𝛼2

1−𝑜(1)

− 2𝐶1

(1− 𝑜(1))
√
𝑘
,

concluding the proof.

Proof of the second item of Theorem 4. To prove Γ𝑝
𝑛(𝑘) < 0, we use Lemma 8 and Lemma 12

to get

Γ𝑝
𝑛(𝑘) = Pr

[︃
𝑛∑︁

𝑖=1

𝑋(𝑖) ≤
𝑛

2

⃒⃒⃒⃒
𝑝

]︃
− Pr

[︃
𝑘∑︁

𝑖=1

𝑋(𝑖) ≤
𝑘

2

⃒⃒⃒⃒
𝑝

]︃

≤ 1

𝑛2(𝑎−𝑏)2
− 1√

2𝜋

1− 𝑜(1)

2𝛼
√
log 𝑘

1

𝑘
2𝛼2

1−𝑜(1)

+
2𝐶1

(1− 𝑜(1))
√
𝑘
,

with probability at least 1 − 𝑛−2𝑏2 − 𝑛−Ω(1) = 1 − 𝑛−Ω(1), where E𝑝∼𝒟𝑛 [𝑝] ≥ 1
2
+ 𝜀𝑛 with

𝜀𝑛 = 𝑎
√︁

log𝑛
𝑛

for some 𝑎 > 0, 0 < 𝑏 < 𝑎, 1− 𝐹𝑛(1 + 𝛼
√︁

log 𝑘
𝑘

) = 1
𝑛1+Ω(1) for some 𝛼 > 0, and

𝐶1 is some constant. Since 𝑘 = 𝑛𝑟, or 𝑛 = 𝑘
1
𝑟 ,

Γ𝑝
𝑛(𝑘) ≤

1

𝑘
2(𝑎−𝑏)2

𝑟

− 1√
2𝜋

1− 𝑜(1)

2𝛼
√
log 𝑘

1

𝑘
2𝛼2

1−𝑜(1)

+
2𝐶1

(1− 𝑜(1))
√
𝑘
,

When inequalities 2𝛼2

1−𝑜(1)
< 2(𝑎−𝑏)2

𝑟
and 2𝛼2

1−𝑜(1)
< 1

2
are satisfied, we have Γ𝑝

𝑛(𝑘) = −𝑂

(︂
1√
log 𝑘

1

𝑘
2𝛼2

1−𝑜(1)

)︂
<

0 for sufficiently large 𝑛. The former is satisfied when 𝑎 >
√
𝑟𝛼 and 𝑏 is sufficiently close to

0. The latter is satisfied when 𝛼 < 1
2
.
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Figure 2.4: Estimates of Pr[
∑︀𝑘

𝑖=1 𝑋(𝑖) > 𝑘
2

| 𝑝] (Representative Democracy) and
Pr[
∑︀𝑛

𝑖=1𝑋(𝑖) > 𝑛
2
| 𝑝] (Direct Democracy) with 95% confidence intervals as a function of

the population size for different values of 𝜀𝑛, with 𝑘 = 𝑛0.36 and 𝒟𝑛 = 𝒰 [0.4 + 𝜀𝑛, 0.6]. For
large society biases, the population size needs to reach a critical mass for the congress to
outperform direct democracy. Note that E[𝑝𝑖] = 1+𝜀𝑛

2
so 𝜀𝑛 can be thought of as the bias

of society towards the correct answer. The top image is for 𝐿 = 0, the middle one is for
𝐿 = 0.1 and the bottom one for 𝐿 = 0.4.
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2.5 Discussion

In the epistemic setting, we have proved that under mild conditions, through the lens of an

epistemic approach, current congresses are run with a sub-optimal size. However, despite

this, it seems that these smaller congresses can still be cogent by at least beating the majority

under appropriate conditions.

Current debates about the number of representatives in democracies tend to discuss

reductions in size, not increases, as embodied by a 2020 Italian referendum approved reducing

congress’ size from 945 to 600 [65]. Indeed, even under the assumption that a larger congress

would lead to a “correct” answer more often, this is clearly not the only desiderata to consider.

Even under the strong assumption that the congress members’ votes reflect those of the top

experts in society, congress-members are costly for the taxpayers. Beyond this, the legitimacy

and representativeness [170] of the institution are constantly under scrutiny. Designing

political institutions relying solely on mathematical insights could yield unforeseen negative

externalities (did Madison not warn against the confusion of the multitude?). Cognitive,

sociological, and economic knowledge should be coupled with mathematical analyses to reach

a reasonable trade-off rather than optimizing a single factor.

Incorporating a cost analysis, similar to Magdon-Ismail and Xia [157] also seems partic-

ularly relevant to quantify the trade-off between the congress accuracy and its costs for the

constituents. They find that adding a cost polynomial in the number of representatives and

a benefit of choosing the correct outcome polynomial in the number of voters decreases the

optimal congress size to 𝑂(log 𝑛). Finally, this work supports, to some extent, propositions

to constitute assemblies of citizens under liquid democracy [26, 48, 101, 105, 111, 129, 173]

that would vote on behalf of the entire population. Indeed, liquid democracy could yield very

large citizen assemblies deemed desirable by our findings. Further research on the accuracy

of such citizen assemblies could discuss the influence of the voters’ weight in the weighted
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majority’s performance.
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Chapter 3

In Defense of Liquid Democracy

It can always be taken into the calculation, and counted at a certain figure, a

higher figure being assigned to the suffrages of those whose opinion is entitled to

greater weight. There is not in this arrangement any thing necessarily invidious

to those to whom it assigns the lower degrees of influence. Entire exclusion from

a voice in the common concerns is one thing: the concession to others of a more

potential voice, on the ground of greater capacity for the management of the joint

interests, is another.

– John Stuart Mill1

Abstract

The dynamics of random transitive delegations on a graph are of particular interest when

viewed through the lens of an emerging voting paradigm known as liquid democracy. This

paradigm allows voters to choose between directly voting and transitively delegating their

votes to other voters, so that those selected cast a vote weighted by the number of delegations
1See John Stuart Mill’s Considerations on Government [171], where he outlines his contentious view on

plural voting.
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they receive. In the epistemic setting, where voters decide on a binary issue for which there

is a ground truth, previous work showed that, under certain assumptions on the delegation

model, a few voters may amass such a large amount of influence that liquid democracy is less

likely to identify the ground truth than direct voting. We quantify the amount of permissible

concentration of power and examine more realistic delegation models, showing they behave

well by ensuring that (with high probability) there is a permissible limit on the maximum

number of delegations received. Our results demonstrate that the delegation process can be

treated as a stochastic process akin to well-known processes on random graphs — such as

preferential attachment and multi-types branching process — that are sufficiently bounded

for our purposes. Along the way, we prove new bounds on the size of the largest component in

an infinite Pólya urn process (a generalization of the preferential attachment model), which

may be of independent interest. Our work suggests that existing and new results in random

graph theory may alleviate concerns raised about liquid democracy and bolster the case for

the applicability of this emerging paradigm.

3.1 Introduction

Liquid democracy is a voting paradigm that is conceptually situated between direct democ-

racy, in which voters have direct influence over decisions, and representative democracy,

where voters choose delegates who represent them for a period of time. Under liquid democ-

racy, voters have a choice: they can either vote directly on an issue like in direct democracy,

or delegate their vote to another voter, entrusting them to vote on their behalf. The defining

feature of liquid democracy is that these delegations are transitive: if voter 1 delegates to

voter 2 and voter 2 delegates to voter 3, then voter 3 votes (or delegates) on behalf of all

three voters.

In recent years, liquid democracy has gained prominence around the world. The most
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impressive example is that of the German Pirate Party, which adopted the LiquidFeedback

platform in 2010 [137]. Other political parties, such as the Net Party in Argentina and Flux

in Australia, have run on the wily promise that, once elected, their representatives would be

essentially controlled by voters through a liquid democracy platform. Companies are also

exploring the use of liquid democracy for corporate governance; Google, for example, has

run a proof-of-concept experiment [113].

Practitioners, however, recognize that there is a potential flaw in liquid democracy,

namely, the possibility of concentration of power, in the sense that certain voters amass a

relatively large number of delegations, giving them pivotal influence over the final decision.

This scenario seems inherently undemocratic—and it is not a mere thought experiment.

Indeed, in the LiquidFeedback platform of the German Pirate Party, a linguistics professor

at the University of Bamberg received so many delegations that, as noted by Der Spiegel,2

his “vote was like a decree.”

3.1.1 Problem Statement

Kahng et al. [129] examine liquid democracy’s concentration-of-power phenomenon from a

theoretical viewpoint and establish a troubling impossibility result in what has been called

the epistemic setting, that is, one where there is a ground truth.3 Informally, they demon-

strate that, even under the strong assumption that voters delegate only to more “competent”

voters, any “local mechanism” satisfying minimal conditions will, in certain instances, be sub-

ject to concentration of power, leading to relatively low accuracy. More specifically, Kahng

et al. model the problem as a decision problem where voters decide on an issue with two

outcomes, {0, 1}, where 1 is correct (the ground truth) and 0 is incorrect. Each of the voters

𝑖 ∈ {1, . . . , 𝑛} is characterized by a competence 𝑝𝑖 ∈ [0, 1]. The binary vote 𝑉𝑖 of each voter
2http://www.spiegel.de/international/germany/liquid-democracy-web-platform-makes-professor-most-

powerful-pirate-a-818683.html
3The use of the term “epistemic” in this context is well-established in the social choice literature [151, 189].
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𝑖 is drawn independently from a Bernoulli distribution, that is, each voter votes correctly

with probability 𝑝𝑖. Under direct democracy, the outcome of the election is determined by

a majority vote: the correct outcome is selected if and only if more than half of the voters

vote for the correct outcome; that is, it is correct if and only if
∑︀𝑛

𝑖=1 𝑉𝑖 ≥ 𝑛/2. Under

liquid democracy, there exists a set of weights, weight𝑖 for each 𝑖 ∈ [𝑛], which represent the

number of votes that voter 𝑖 gathered transitively after delegation (if voter 𝑖 delegates, then

weight𝑖 = 0). The outcome of the election is then determined by a weighted majority; it is

correct if and only if
∑︀𝑛

𝑖=1 weight𝑖𝑉𝑖 ≥ 𝑛/2.

Kahng et al. also introduce the concept of a delegation mechanism, which determines

whether voters delegate and, if so, to whom they delegate. They are especially interested

in local mechanisms, where the delegation decision of a voter depends only on their local

neighborhood according to an underlying social network. They assume that voters delegate

only to those with strictly higher competence, which excludes the possibility of cyclic del-

egations. To evaluate liquid democracy, Kahng et al. test the intuition that society makes

more informed decisions under liquid democracy than under direct democracy (especially

given the foregoing assumption about upward delegation). To that end, they define the gain

of a delegation mechanism to be the difference between the probability the correct outcome

is selected under liquid democracy and the probability the correct outcome is selected under

direct democracy. A delegation mechanism satisfies positive gain if its gain is strictly positive

in some cases, and it satisfies do no harm if its loss (negative gain) is at most 𝜀 for all suffi-

ciently large instances. The main result of Kahng et al. is that local mechanisms can never

satisfy these two requirements. Caragiannis and Micha [42] further strengthen this negative

result by showing that there are instances where local mechanisms perform much worse than

either direct democracy or dictatorship (the most extreme concentration of power).

These results undermine the case for liquid democracy: the benefits of delegation appear

to be reversed by concentration of power. However, the negative conclusion relies heavily
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on modeling assumptions and has not been borne empirically [18]. In this chapter, we pro-

vide a rebuttal by introducing an arguably more realistic model in which liquid democracy

is able to avoid a degree of concentration of power that precludes accurate aggregation,

thereby satisfying both do-no-harm and positive-gain (for suitably defined extensions). Cru-

cially, some have experimented with liquid democracy in collaboration with a number of

different companies and organizations [202], and—as we explain in more detail later— the

experimental results largely support our theoretical predictions. In particular, accuracy under

liquid democracy is higher than under direct democracy despite some concentration of power,

and participants’ delegation behavior aligns with one of the theoretical models introduced

in this work.

3.1.2 Contributions

Our contributions are threefold. First, building on the work of Kahng et al. [129], we

provide a general framework to analyze the dynamics of stochastic network formed through

the transitive delegations. Second, we identify large classes of delegation models where liquid

democracy performs well in that delegations lead to an increase in the group’s expertise while

inducing a sufficiently small amount of concentration of power. Third, along the way, we

prove new high-probability bounds on the size of the largest component in an infinite Pólya

urn process; this result may be of independent interest.

3.1.2.1 Stochastic Delegations

Our point of departure from the existing literature is the way we model delegation in liq-

uid democracy. To emphasize these differences, instead of calling these delegation functions

mechanisms, we instead call them delegation models, as they are intended to capture inde-

pendent voter behavior rather than prescribing to each voter to whom they must delegate.
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Our delegation models are defined by 𝑀 = (𝑞, 𝜙), where 𝑞 : [0, 1] → [0, 1] is a function that

maps a voter’s competence to the probability they delegate and 𝜙 : [0, 1]2 → R≥0 maps a

pair of competencies to a weight. In this model, each voter 𝑖 votes directly with probability

1− 𝑞(𝑝𝑖) and, conditioned on delegating with probability 𝑞(𝑝𝑖), delegates to voter 𝑗 ̸= 𝑖 with

probability proportional to 𝜙(𝑝𝑖, 𝑝𝑗). Crucially, a voter does not need to “know” the com-

petence of another voter to decide whether to delegate; rather, the delegation probabilities

are merely influenced by competence in an abstract way captured by 𝜙. Also, note that

delegation cycles are possible, and we take a worst-case approach to dealing with them: If

the delegations form a cycle, then all voters in the cycle are assumed to be incorrect (vote

0).4

The most significant difference between our model of delegation and that of Kahng et al.

[129] is that in our model, each voter has a chance of delegating to any other voter, whereas

in their model, an underlying social network restricts delegation options. Our model captures

a connected world where, in particular, voters may have heard of experts on various issues

even if they do not know them personally. Although our model eschews an explicit social

network, it can be seen as embedded into the delegation process, where the probability that

𝑖 delegates to 𝑗 takes into account the probability that 𝑖 is familiar with 𝑗 in the first place.

Another difference between our model and that of Kahng et al. [129] is that we model

the competencies 𝑝1, . . . , 𝑝𝑛 as being sampled independently from a distribution 𝒟. While

this assumption is made mainly for ease of exposition, it allows us to avoid edge cases and

obtain robust results.

3.1.2.2 Delegation Models

Our goal is to identify delegation models that satisfy (probabilistic versions of) positive gain

and do no harm. Our first technical contribution, in Section 3.2.1, is the formulation of
4In LiquidFeedback, delegation cycles are, in fact, ignored.
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general conditions on the model and competence distribution that are sufficient for these

properties to hold (Lemma 13). In particular, to achieve the more difficult do no harm

property, we present conditions that guarantee the maximum weight max-weight(𝐺𝑛) accu-

mulated by any voter is sub-linear with high probability and that the expected increase in

competence post-delegation is at least a positive constant times the population size. These

conditions intuitively prevent extreme concentration of power and ensure that the represen-

tatives post-delegation are sufficiently better than the entire population to compensate for

any concentration of power that does happen.

Although the proof is straightforward, the benefit of this lemma is that it then suffices to

identify models and distribution classes that verify these conditions. A delegation model 𝑀

and a competence distribution 𝒟 induce a distribution over delegation instances that gen-

erates random graphs in ways that relate to well-known graph processes, which we leverage

to analyze our models. Specifically, we introduce three models, all shown to satisfy do no

harm and positive gain under any continuous distribution over competence levels. The first

two models, upward delegation and confidence-based delegation, can be seen as interesting

but somewhat restricted case studies, which demonstrate the robustness of our approach.

By contrast, the general continuous delegation model is, as the name suggests, quite general.

Moreover, it is realistic: its predictions are consistent with the experiments displayed in

Chapter 4.

Upward Delegation. In Section 3.3, we consider a model according to which the prob-

ability of delegating 𝑝 is exogenous and constant across competencies, and delegation can

only occur towards voters with strictly higher competence. That is, the probability that any

voter 𝑖 delegates is 𝑞(𝑝𝑖) = 𝑝 and the weight that any voter 𝑖 puts on another voter 𝑗 is

𝜙(𝑝𝑖, 𝑝𝑗) = I{𝑝𝑗−𝑝𝑖>0}. This model captures the fact that there might be some reluctance to

delegate regardless of the voter’s competence but does assume that voters act in the interest
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of society by only delegating to voters that are more competent than they are.

To generate a random graph induced by such a model, one can add a single voter at

a time in order of decreasing competence and allow the voter to either not delegate (with

probability 1− 𝑝) and create their own disconnected component, or delegate to the creator

of any other component with probability proportional the size of the component. This

works because delegating to any voter in the previous components is possible (since they

have strictly higher competence) and would result in the votes being concentrated in the

originator of that component by transitivity. Such a process is exactly the one that generates

a preferential attachment graph with a positive probability of not attaching to the existing

components [216]. We can then show that, with high probability, no component grows too

large so long as 𝑝 < 1 (see Section 3.1.2.3 for an overview of this step). Further, continuity of

the competence distribution ensures that enough lower competence voters delegate to higher

competence voters to sufficiently increase the average.

Confidence-Based Delegation. In Section 3.4, we consider a model in which voters

delegate with probability decreasing in their competencies and choose someone at random

when they delegate. That is, the probability 𝑞(𝑝𝑖) that any voter 𝑖 delegates is decreasing

in 𝑝𝑖 and the weight that any voter 𝑖 gives to any voter 𝑗 is 𝜙(𝑝𝑖, 𝑝𝑗) = 1. In other words,

in this model, competence does not affect the probability of receiving delegations, only the

probability of delegating.

To generate a random graph induced by such a model, one can begin from a random

vertex and study the delegation tree that starts at that vertex. A delegation tree is defined

as a branching process, where a node 𝑖’s “children” are the nodes that delegated to node 𝑖.

In contrast to classical branching processes, the probability for a child to be born increases

as the number of people who already received delegations decreases. Nevertheless, we prove

that, with high probability, as long as a delegation tree is no larger than 𝑂(log 𝑛), our
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heterogeneous branching process is dominated by a sub-critical graph branching process [5].

We can then conclude that no component has size larger than 𝑂(log 𝑛) with high probability.

Next, we show that the expected competence among the voters that do not delegate is strictly

higher than the average competence. Finally, given that no voter has weight larger than

𝑂(log 𝑛), we prove that a small number of voters end up in cycles with high probability. We

can therefore show that the conditions of Lemma 13 are satisfied.

General Continuous Delegation. Finally, we consider a general model in Section 3.5

where the likelihood of delegation is fixed and the weight assigned to each voter when del-

egating is increasing in their competence. That is, each voter 𝑖 delegates with probability

𝑞(𝑝𝑖) = 𝑝 and the weight that voter 𝑖 places on voter 𝑗 is 𝜙(𝑝𝑖, 𝑝𝑗), where 𝜙 is continuous

and increases in its second coordinate. Thus, in this model, the delegation distribution is

slightly skewed towards more competent voters. Note that this does not imply that all voters

delegate to someone with expected competence higher than their own, simply that they are

more likely to delegate to a higher competence than a lower competence voter.

To generate a random graph induced by such a model, we again consider a branching

process, but now voters 𝑗 and 𝑘 place different weights on 𝑖 per 𝜙. Therefore, voters have a

type that governs their delegation behavior; this allows us to define a multi-type branching

process with types that are continuous in [0, 1]. The major part of the analysis is a proof

that, with high probability, as long as the delegation tree is no larger than 𝑂(log 𝑛), our

heterogeneous branching process is dominated by a sub-critical Poisson multi-type branching

process. To do so, we group the competencies into buckets that partition the segment [0, 1]

into small enough pieces. We define a new 𝜙′ that outputs, for any pair of competencies

𝑝𝑖, 𝑝𝑗, the maximum weight a voter from 𝑖’s bucket could place on a voter from 𝑗’s bucket.

We can show that such a discrete multi-type branching process is sub-critical and conclude

that no component has size larger than 𝑂(log 𝑛) with high probability. In a similar fashion to
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Confidence-Based Delegation, we also show that there is an expected increase in competence

post-delegation.

Consistency with experiments. The experiments conducted by some tested the power

of liquid democracy to uncover the truth with respect to questions in areas like general

knowledge, popular culture and spatial reasoning [202]. In brief, the (still somewhat prelim-

inary) results suggest that (i) liquid democracy is overall more likely to pinpoint the truth

compared to direct democracy, despite concentration of power, (ii) competence is inversely

correlated with the chance of delegation, and (iii) the likelihood of delegating to another

voter increases with their competence. The results, therefore, support the assumptions and

predictions made by the general continuous delegation model. While there are still gaps

between the theory and the experiments— as we discuss in Section 3.6— the experiments

indicate that the model is useful in at least some practical scenarios.

3.1.2.3 Component Sizes in Infinite Pólya Urn Processes

Lastly, recall that to prove that upward delegation satisfies do no harm, we show that

the largest component in an infinite Pólya’s urn process is sub-linear with high probability

(Lemma 15). We briefly expand on the proof as this result was, to the best of our knowledge,

not previously known in the random graph literature, and may be of independent interest.

We begin by focusing on the first 𝑡𝛾 bins (for a suitably chosen 𝛾 depending on the attach-

ment probability 𝑝) and derive an upper bound on the expected size of these bins. This allows

us to use Markov’s inequality and union bound over all bins to show that simultaneously all

of them are sublinear in size with high probability.

Second, we take care of the remaining bins by observing that each additional bins’s

growth is isomorphic to a classic Pólya urn process with two bins, whose limiting dynamic

follows a Beta distribution. We analyze the rate of convergence, which allows us to give
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sufficiently strong bounds using Chebyshev’s inequality after exactly 𝑡− 𝑡𝛾 steps, and union

bound over all of these bins, concluding that all are sublinear with high probability.

3.1.3 Related work

Our work is part of the field of computational social choice [35] and random graph theory

[5, 73]. The most closely related paper is that of Kahng et al. [129], which was discussed in

detail above. It is worth noting, though, that they complement their main negative result

with a positive one: when the mechanism can restrict the maximum number of delegations

(transitively) received by any voter to 𝑜(
√
log 𝑛), do no harm and positive gain are satisfied.

Imposing such a restriction would require a central planner that monitors and controls del-

egations. Gölz et al. [101] build on this idea: they study liquid democracy systems where

voters may nominate multiple delegates and a central planner chooses a single delegate for

each delegator in order to minimize the maximum weight of any voter.

Similarly, Brill and Talmon [37] propose allowing voters to specify ordinal preferences

over delegation options and possibly restricting or modifying delegations in a centralized

way. Caragiannis and Micha [42], and then Becker et al. [18] also consider central planners;

they show that, for given competencies, the problem of choosing among delegation options

to maximize the probability of a correct decision is hard to approximate. In any case,

implementing these proposals would require a fundamental rethinking of the practice of liquid

democracy. By contrast, our positive results show that decentralized delegation models are

inherently self-regulatory, which supports the effectiveness of the current practice of liquid

democracy.

More generally, there has been a significant amount of theoretical research on liquid

democracy in recent years. To give a few examples: Green-Armytage [105] studies whether it

is rational for voters to delegate their vote from a utilitarian viewpoint; Christoff and Grossi
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[48] examine a similar question but in the context of voting on logically interdependent

propositions; Bloembergen et al. [25] and Zhang and Grossi [243] study liquid democracy

from a game-theoretic viewpoint. On the empirical side, some research has investigated

delegation dynamics of liquid democracy while making institutional decisions [113, 137] and

a recent one has directly analyzed its epistemic performance Chapter 4, finding generally

positive results.

Further afield, liquid democracy is related to another paradigm called proxy voting, which

dates back to the work of Miller [173]. Proxy voting allows voters to nominate representatives

that have been previously declared. Cohensius et al. [51] study utilitarian voters who vote

for the representative with the closest platform to theirs; they prove that the outcome of an

election with proxy votes yields platforms closer to the median platform of the population

than classical representative democracy. Their result provides a different viewpoint on the

value of delegation.

As a final note regarding the social choice literature, this work is methodologically em-

bedded in the branch of social choice theory that investigates the accuracy of collective

decision-making under the assumption that there exists a, a priori unknown, correct answer

that the group tries to uncover [22, 43, 64]. More particularly, it relates to a line of papers

focused on decision-making process involving a set of designated representatives [157, 204].

Next, our work builds on the random graph literature, as our delegation processes are

related to well-known stochastic graph processes. Upward delegation can be viewed as a

generalization of the preferential attachment model where agents do not attach to the existing

component(s) with a fixed probability. Classical preferential attachment models assume that

a new node attaches to existing node 𝑛0 with probability (parameterized by an attachment

function) depending on the degree of 𝑛0 [16, 73]. Various properties of the preferential

attachment model have been widely studied [28, 86, 206]. Of particular interest, Krapivsky

and Redner [140] analyze the distribution of the number of nodes with given transitive
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in-degree (or in-component size) for different attachment functions.

In our setting, the probability of attaching grows linearly with the degree (see Bhamidi

[23] for examples of other attachment functions and Borgs et al. [30] for generalization of

properties that depend on the attachment function). Additionally, our nodes may create

a new component with fixed probability – a setup introduced by Simon [216] and usually

referred to as an infinite Pólya urn process. Others have studied the distribution of degrees

[71], the distribution of the number of components with 𝑘 persons at time 𝑡 [49] and the con-

ditions for the emergence of infinite components [52]. However, to the best of our knowledge,

the existing results do not allow us to conclude any results on the size of the largest compo-

nent with high probability after a finite amount of time: They either look only at the limiting

case, or simply at degree distributions, which are not sufficient for our results. Further, our

proof relies on existing work on classical two-urn Pólya process [76, 127, 158, 168, 193].

In the other cases, we prove that our confidence-based and general continuous delega-

tion models are dominated by well-known subcritical binomial [5] and multi-type Poisson

branching process [29], which have size at most 𝑂(log 𝑛) with high probability.

Finally, our work is in line with an influential tradition leveraging random graph theory

to understand complex social [e.g., 80, 99, 100, 124, 175, 198] and economic [e.g., 77, 135,

136, 185] dynamics.

3.2 Model

There is a set of 𝑛 voters, denoted [𝑛] = {1, . . . , 𝑛}. We assume voters are making a decision

on a binary issue and there is a correct alternative and an incorrect alternative. Each voter

𝑖 has a competence level 𝑝𝑖 ∈ [0, 1] which is the probability that 𝑖 votes correctly. We denote

the vector of competencies by 𝑝𝑛 = (𝑝1, . . . , 𝑝𝑛). When 𝑛 is clear from the context, we

sometimes drop it from the notation.
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Delegation graphs A delegation graph 𝐺𝑛 = ([𝑛], 𝐸) on 𝑛 voters is a directed graph

with voters as vertices and a directed edge (𝑖, 𝑗) ∈ 𝐸 denoting that 𝑖 delegates their vote

to 𝑗. Again, if 𝑛 is clear from context, we occasionally drop it from the notation. The

outdegree of a vertex in the delegation graph is at most 1 since each voter can delegate to

at most one person. Voters that do not delegate have no outgoing edges. In a delegation

graph 𝐺𝑛, the delegations received by a voter 𝑖, dels𝑖(𝐺𝑛), is defined as the total number

of people that (transitively) delegated to 𝑖 in 𝐺𝑛, (i.e., the total number of ancestors of 𝑖

in 𝐺𝑛). The weight of a voter 𝑖, weight𝑖(𝐺𝑛), is dels𝑖(𝐺𝑛) + 1 (the number of delegation

they received plus their own weight) if 𝑖 votes directly, and 0 if 𝑖 delegates. We define

max-weight(𝐺𝑛) = max𝑖∈[𝑛] weight𝑖(𝐺𝑛) to be the largest weight of any voter and define

total-weight(𝐺𝑛) =
∑︀𝑛

𝑖=1 weight𝑖(𝐺𝑛). Since each vote is counted at most once, we have that

total-weight(𝐺𝑛) ≤ 𝑛. However, note that if delegation edges form a cycle, then the weight

of the voters on the cycle and voters delegating into the cycle are all set to 0 and hence will

not be counted. In particular, this means that total-weight(𝐺𝑛) may be strictly less than 𝑛.5

Delegation instances We call the tuple (𝑝𝑛, 𝐺𝑛) a delegation instance, or simply an in-

stance, on 𝑛 voters. Let 𝑉𝑖 = 1 if voter 𝑖 would vote correctly if 𝑖 did vote, and 𝑉𝑖 = 0 oth-

erwise. Fixed competencies 𝑝𝑛 induce a probability measure P𝑝𝑛 over the 𝑛 possible binary

votes 𝑉𝑖, where 𝑉𝑖 ∼ Bern(𝑝𝑖). Given votes 𝑉1, . . . , 𝑉𝑛, we let 𝑋𝐷
𝑛 be the number of correct

votes under direct democracy, that is, 𝑋𝐷
𝑛 =

∑︀𝑛
𝑖=1 𝑉𝑖. We let 𝑋𝐹

𝐺𝑛
be the number of correct

votes under liquid democracy with delegation graph 𝐺𝑛, that is, 𝑋𝐹
𝐺𝑛

=
∑︀𝑛

𝑖=1 weight𝑖(𝐺𝑛)·𝑉𝑖.

The probability that direct democracy and liquid democracy are correct are P𝑝𝑛 [𝑋
𝐷
𝑛 > 𝑛/2]

and P𝑝𝑛 [𝑋
𝐹
𝐺𝑛

> 𝑛/2], respectively.

5This is a worst-case approach where cycles can only hurt the performance of liquid democracy, since this
assumption is equivalent to assuming that all voters on the cycles vote incorrectly.
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Gain of a delegation instance We define the gain of an instance as

gain(𝑝𝑛, 𝐺𝑛) = P𝑝𝑛 [𝑋
𝐹
𝐺𝑛

> 𝑛/2]− P𝑝𝑛 [𝑋
𝐷
𝑛 > 𝑛/2].

In words, it is the difference between the probability that liquid democracy is correct and

the probability that majority is correct.

Randomization over delegation instances In general, we assume that both competen-

cies and delegations are chosen randomly. Each voter’s competence 𝑝𝑖 is sampled i.i.d. from

a fixed distribution 𝒟 with support contained in [0, 1]. Delegations will be chosen according

to a model 𝑀 . A model 𝑀 = (𝑞, 𝜙) is composed of two parts. The first 𝑞 : [0, 1] → [0, 1] is

a function that maps competencies to the probability that the voter delegates. The second

𝜙 : [0, 1]2 → R≥0 maps pairs of competencies to a weight. A voter 𝑖 with competence 𝑝𝑖 will

choose how to delegate as follows:

– With probability 1− 𝑞(𝑝𝑖) they do not delegate.

– With probability 𝑞(𝑝𝑖), 𝑖 delegates; 𝑖 places weight 𝜙(𝑝𝑖, 𝑝𝑗) on each voter 𝑗 ̸= 𝑖 and

randomly sample another voter 𝑗 to delegate to proportional to these weights. In the

degenerate case where 𝜙(𝑝𝑖, 𝑝𝑗) = 0 for all 𝑗 ̸= 𝑖, we assume that 𝑖 does not delegate.

A competence distribution 𝒟, a model 𝑀 , and a number 𝑛 of voters induce a probability

measure P𝒟,𝑀,𝑛 over all instances (𝑝𝑛, 𝐺𝑛) of size 𝑛.

We can now redefine the do no harm (DNH) and positive gain (PG) properties from

Kahng et al. [129] in a probabilistic way.

Definition 1 (Probabilistic Do No Harm). A model 𝑀 satisfies probabilistic do no harm

with respect to a class D of distributions if, for all distributions 𝒟 ∈ D and all 𝜀, 𝛿 > 0,
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there exists 𝑛0 ∈ N such that for all 𝑛 ≥ 𝑛0,

P𝒟,𝑀,𝑛[gain(𝑝𝑛, 𝐺𝑛) ≥ −𝜀] > 1− 𝛿.

Definition 2 (Probabilistic Positive Gain). A model 𝑀 satisfies probabilistic positive gain

with respect to a class D of distributions if there exists a distribution 𝒟 ∈ D such that for

all 𝜀, 𝛿 > 0, there exists 𝑛0 ∈ 𝑁 such that for all 𝑛 ≥ 𝑛0,

P𝒟,𝑀,𝑛[gain(𝑝𝑛, 𝐺𝑛) ≥ 1− 𝜀] > 1− 𝛿.

Intuitively, note that positive gain and do no harm relate to the notion of concentration of

the weighted sum
∑︀𝑛

𝑖=1 weight𝑖𝑉𝑖. Indeed, the probability of direct democracy being correct

approaches 1 as 𝑛 increases when the average competence is strictly above a half. As a

result, do no harm is satisfied by a delegation model exactly when the probability that liquid

democracy is correct also approaches 1. This happens when the expertise post-delegation

remains strictly above a half and the weighted sum
∑︀𝑛

𝑖=1 weight𝑖𝑉𝑖 concentrates. Further,

positive gain is verified if there exists a setup where the average group competence is strictly

below a half, and the average expertise post-delegation remains strictly above a half and

the weighted sum
∑︀𝑛

𝑖=1 weight𝑖𝑉𝑖 concentrates. In turn, these established benchmarks are

directly mapped to existing concerns in social choice theory on the convergence of weighted

majorities [110].

3.2.1 Core Lemma

Next, we give a key lemma, which provides sufficient conditions for a model 𝑀 to satisfy

probabilistic do no harm and probabilistic positive gain with respect to a class D of distri-

butions. This lemma will form the basis of all of our later results.
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Lemma 13. If 𝑀 is a model, D a class of distributions, 𝑛 a number of persons, and for all

distributions 𝒟 ∈ D, there is an 𝛼 ∈ (0, 1) and 𝐶 : N → N with 𝐶(𝑛) ∈ 𝑜(𝑛) such that

P𝒟,𝑀,𝑛 [max-weight(𝐺𝑛) ≤ 𝐶(𝑛)] = 1− 𝑜(1) (3.1)

P𝒟,𝑀,𝑛

[︃
𝑛∑︁

𝑖=1

weight𝑖(𝐺𝑛) · 𝑝𝑖 −
𝑛∑︁

𝑖=1

𝑝𝑖 ≥ 2𝛼𝑛

]︃
= 1− 𝑜(1), (3.2)

then 𝑀 satisfies probabilistic do no harm. If in addition, there exists a distribution 𝒟 ∈ D

and an 𝛼 ∈ (0, 1) such that

P𝒟,𝑀,𝑛

[︃
𝑛∑︁

𝑖=1

𝑝𝑖 + 𝛼𝑛 ≤ 𝑛/2 ≤
𝑛∑︁

𝑖=1

weight𝑖(𝐺𝑛) · 𝑝𝑖 − 𝛼𝑛

]︃
= 1− 𝑜(1), (3.3)

then 𝑀 satisfies probabilistic positive gain.

In words, condition (3.1) ensures that, as the number of voters grows large, the weighted

number of correct votes under liquid democracy will concentrate around its expectation,∑︀𝑛
𝑖=1 weight𝑖(𝐺𝑛) · 𝑝𝑖. Standard concentration results already imply this holds for direct

democracy. Condition (3.2) ensures that these expectations are sufficiently separated. So

with high probability, liquid democracy will have more correct votes than direct democracy,

which is sufficient to guarantee DNH. Finally, Condition (3.3) ensures that in some cases, the

expectations for direct and liquid votes will be below and above half the voters, respectively,

which after applying concentration means there will likely be a large gain.6

Throughout many of the proofs, we will make use of the following well-known concentra-
6Note that these are sufficient conditions only. Say 1/4 of all voters delegate to a single voter 𝑖 with

competence 𝑝𝑖 < 1. Here, if the remaining voters don’t delegate and have average competence > 2/3,
then, with high probability, even with delegations, the weighted majority will be correct. We could easily
strengthen it to include instances like these where a single voter receives a linear number of votes or even
other corner cases depending on the interplay between the weights and competence increase. Our result
captures succinct, interesting, and general patterns that relate macro metrics and convergence. A more fine-
grained approach, and interesting future direction, would be to use the notions of voters’ effect or influence,
designed by [110] in the case of weighted majority and weighted vote.
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tion inequality [119]:

Lemma 14 (Hoeffding’s Inequality). Let 𝑍1, · · · , 𝑍𝑛 be independent, bounded random vari-

ables with 𝑍𝑖 ∈ [𝑎, 𝑏] for all i, where −∞ < 𝑎 ≤ 𝑏 < ∞. Then

P

[︃
1

𝑛

𝑛∑︁
𝑖=1

𝑍𝑖 − E[𝑍𝑖] ≥ 𝑡

]︃
≤ exp

(︂
− 2𝑛𝑡2

(𝑏− 𝑎)2

)︂

and

P

[︃
1

𝑛

𝑛∑︁
𝑖=1

𝑍𝑖 − E[𝑍𝑖] ≤ −𝑡

]︃
≤ exp

(︂
− 2𝑛𝑡2

(𝑏− 𝑎)2

)︂
for all 𝑡 ≥ 0.

Armed with Lemma 14, we now prove Lemma 13.

Proof. We establish the two properties (3.1) and (3.2) separately.

Probabilistic do-no-harm: We first show that a model 𝑀 that satisfies conditions (3.1)

and (3.2) satisfies probabilistic do no harm. Fix an arbitrary competence distribution 𝒟 ∈ D

and let 𝛼 and 𝐶 be such that (3.1) and (3.2) are satisfied. Without loss of generality, suppose

that 𝐶(𝑛) ≤ 𝑛 for all 𝑛, as replacing any larger values of 𝐶(𝑛) with 𝑛 will not affect (3.1)

(since max-weight(𝐺𝑛) ≤ 𝑛 for all graphs 𝐺𝑛 on 𝑛 vertices). Fix 𝜀, 𝛿 > 0. We must identify

some 𝑛0 such that for all 𝑛 ≥ 𝑛0, P𝒟,𝑀,𝑛[gain(𝑝𝑛, 𝐺𝑛) ≥ −𝜀] > 1− 𝛿.

We will begin by showing there exists 𝑛1 ∈ N such that for all instances (𝑝𝑛, 𝐺𝑛) on

𝑛 ≥ 𝑛1 voters, if both

max-weight(𝐺𝑛) ≤ 𝐶(𝑛) and (3.4)
𝑛∑︁

𝑖=1

weight𝑖(𝐺𝑛) · 𝑝𝑖 −
𝑛∑︁

𝑖=1

𝑝𝑖 ≥ 2𝛼𝑛, (3.5)
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then

gain(𝑝𝑛, 𝐺𝑛) ≥ −𝜀. (3.6)

Since (3.4) and (3.5) each hold with probability 1−𝑜(1) by (3.1) and (3.2), for sufficiently

large 𝑛, say 𝑛 ≥ 𝑛2, they will each occur with probability at least 1 − 𝛿/2. Hence, by a

union bound, for all 𝑛 ≥ 𝑛2, they both occur with probability at least 1 − 𝛿. By taking

𝑛0 = max(𝑛1, 𝑛2), this implies that probabilistic do no harm is satisfied.

We now prove that, for sufficiently large 𝑛, (3.4) and (3.5) imply (3.6). First, we will

show that

gain(𝑝𝑛, 𝐺𝑛) ≥ −P𝑝𝑛 [𝑋
𝐷
𝑛 > 𝑋𝐹

𝐺𝑛
]. (3.7)

Indeed, we have that

P𝑝𝑛 [𝑋
𝐷
𝑛 > 𝑛/2] = P𝑝𝑛 [𝑋

𝐷
𝑛 > 𝑛/2, 𝑋𝐹

𝐺𝑛
> 𝑛/2] + P𝑝𝑛 [𝑋

𝐷
𝑛 > 𝑛/2, 𝑋𝐹

𝐺𝑛
≤ 𝑛/2]

≤ P𝑝𝑛 [𝑋
𝐹
𝐺𝑛

> 𝑛/2] + P𝑝𝑛 [𝑋
𝐷
𝑛 > 𝑋𝐹

𝐺𝑛
]

where the first transition holds by the law of total probability, and the second because the

corresponding events are contained in each other. That is,

{︀
𝑋𝐷

𝑛 > 𝑛/2, 𝑋𝐹
𝐺𝑛

> 𝑛/2
}︀
⊆
{︀
𝑋𝐹

𝐺𝑛
> 𝑛/2

}︀
and {︀

𝑋𝐷
𝑛 > 𝑛/2, 𝑋𝐹

𝐺𝑛
≤ 𝑛/2

}︀
⊆
{︀
𝑋𝐷

𝑛 > 𝑋𝐹
𝐺𝑛

}︀
.

Re-arranging the terms above yields (3.7).

Hence, for our purpose, it suffices to show that (3.4) and (3.5) imply P𝑝𝑛

[︀
𝑋𝐷

𝑛 > 𝑋𝐹
𝐺𝑛

]︀
≤ 𝜀.

Intuitively, we will use (3.5) to show the expected value of 𝑋𝐷
𝑛 is well below the expected

value of 𝑋𝐹
𝐺𝑛

. Then we will show both 𝑋𝐷
𝑛 and 𝑋𝐹

𝐺𝑛
concentrate well around their means,
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where for the latter we will need (3.4). Together, these observations imply that 𝑋𝐹
𝐺𝑛

> 𝑋𝐷
𝑛

with high probability.

Fix an instance (𝑝𝑛, 𝐺𝑛) on 𝑛 voters satisfying (3.4) and (3.5). We will show that for

sufficiently large 𝑛,

P𝑝𝑛

[︃
𝑋𝐷

𝑛 <
𝑛∑︁

𝑖=1

𝑝𝑖 + 𝛼𝑛

]︃
> 1− 𝜀/2 (3.8)

and

P𝑝𝑛

[︃
𝑋𝐹

𝐺𝑛
>

𝑛∑︁
𝑖=1

weight𝑖(𝐺𝑛) · 𝑝𝑖 − 𝛼𝑛

]︃
> 1− 𝜀/2. (3.9)

Note that since (3.5) holds for this instance,
∑︀𝑛

𝑖=1 𝑝𝑖 + 𝛼𝑛 ≤
∑︀𝑛

𝑖=1 weight𝑖(𝐺𝑛) · 𝑝𝑖 − 𝛼𝑛.

Therefore, when both events whose probability is considered in (3.8) and (3.9) hold, 𝑋𝐷
𝑛 ≤

𝑋𝐹
𝑛 . Hence,

P𝑝𝑛 [𝑋
𝐷
𝑛 ≤ 𝑋𝐹

𝐺𝑛
] ≥ P𝑝𝑛

[︃
𝑋𝐷

𝑛 <
𝑛∑︁

𝑖=1

𝑝𝑖 + 𝛼𝑛,𝑋𝐹
𝐺𝑛

>
𝑛∑︁

𝑖=1

weight𝑖(𝐺𝑛) · 𝑝𝑖 − 𝛼𝑛

]︃
> 1− 𝜀

where the last inequality holds by a union bound. This implies that P𝑝𝑛 [𝑋
𝐷
𝑛 ≤ 𝑋𝐹

𝐺𝑛
] < 𝜀, as

needed.

It remains to be shown that (3.8) and (3.9) hold for sufficiently large 𝑛. For (3.8), this

follows directly from Hoeffding’s inequality (Lemma 14). To prove (3.9), first note that, as

shown in Kahng et al. [129],

Var𝑝𝑛
[︀
𝑋𝐹

𝐺𝑛

]︀
=

𝑛∑︁
𝑖=1

weight𝑖(𝐺𝑛)
2 · 𝑝𝑖(1− 𝑝𝑖)

≤ 1

4
·

𝑛∑︁
𝑖=1

weight𝑖(𝐺𝑛)
2

≤ 1

4
·
⌈𝑛/𝐶(𝑛)⌉∑︁

𝑖=1

𝐶(𝑛)2

< 𝑛𝐶(𝑛) ∈ 𝑜(𝑛2),
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where the first inequality holds because 𝑝(1−𝑝) is upper bounded by 1/4, the second because∑︀𝑛
𝑖=1 weight𝑖(𝐺𝑛) ≤ 𝑛 with each weight𝑖(𝐺𝑛) ≤ 𝐶(𝑛) so the value is maximized by setting as

many terms to 𝐶(𝑛) as possible, and the final inequality holds because 𝐶(𝑛) ≤ 𝑛.

Hence, by Chebyshev’s inequality,

P𝑝𝑛

[︀
𝑋𝐹

𝐺𝑛
≤ E𝑝𝑛

[︀
𝑋𝐹

𝐺𝑛

]︀
− 𝛼𝑛

]︀
≤

Var𝑝𝑛 [𝑋
𝐹
𝐺𝑛

]

(𝛼𝑛)2
.

This bound is 𝑜(1) because the numerator is 𝑜(𝑛2) and the denominators is Ω(𝑛2). This

implies that for sufficiently large 𝑛, it will be strictly less than 𝜀/2, so (3.9) holds.

Probabilistic positive gain: Fix a distribution 𝒟 ∈ D and an 𝛼 ∈ (0, 1) such that (3.3)

holds. We want to show that 𝑀 satisfies probabilistic positive gain. Since 𝒟 ∈ D, it also sat-

isfies (3.1) for some 𝐶. We show below that there exists an 𝑛3 such that all instances (𝑝𝑛, 𝐺𝑛)

with 𝑛 ≥ 𝑛3 voters satisfying (3.4) for which
∑︀𝑛

𝑖=1 𝑝𝑖+𝛼𝑛 ≤ 𝑛/2 ≤
∑︀𝑛

𝑖=1 weight𝑖(𝐺𝑛)·𝑝𝑖−𝛼𝑛,

we have that gain(𝑝𝑛, 𝐺𝑛) ≥ 1 − 𝜀. As with the DNH part of the proof, since the events

of (3.1) and (3.3) each hold with probability 1 − 𝑜(1), for sufficiently large 𝑛, say 𝑛 ≥ 𝑛4,

they each occur with probability at least 1− 𝛿/2. Hence, by a union bound, for all 𝑛 ≥ 𝑛4,

they both occur with probability 1− 𝛿. For 𝑛0 = max(𝑛3, 𝑛4), probabilistic positive gain is

satisfied.

It remains to show that that if (3.1) and (3.3) hold for a specific instance (𝑝𝑛, 𝐺𝑛), then

gain(𝑝𝑛, 𝐺𝑛) ≥ 1− 𝜀 for sufficiently large 𝑛. Since 𝒟 ∈ D, (3.8) and (3.9) are both satisfied

for sufficiently large 𝑛. When

𝑛∑︁
𝑖=1

𝑝𝑖 + 𝛼𝑛 ≤ 𝑛/2 ≤
𝑛∑︁

𝑖=1

𝑝𝑖 − weight𝑖(𝐺𝑛) · 𝛼𝑛

is satisfied as well, we get that P𝑝𝑛

[︀
𝑋𝐷

𝑛 > 𝑛/2
]︀
< 𝜀/2 and P𝑝𝑛

[︀
𝑋𝐿

𝐺𝑛
> 𝑛/2

]︀
> 1 − 𝜀/2, so

gain(𝑝𝑛, 𝐺𝑛) > 1− 𝜀 is immediate.
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In the following sections, we investigate natural delegation models and identify conditions

such that the models satisfy probabilistic do no harm and probabilistic positive gain. In all

instances, we will invoke Lemma 13 after showing that its sufficient conditions are satisfied.

3.3 Strictly Upward Delegation Model

We now turn to the analysis of a simple model that assumes that voters either do not delegate

with fixed exogenous probability or delegate to voters that have a competence greater than

their own.

Formally, for a fixed 𝑝 ∈ [0, 1] we let 𝑀𝑈
𝑝 = (𝑞, 𝜙) be the model consisting of 𝑞(𝑝𝑖) = 𝑝 for

all 𝑝𝑖 ∈ [0, 1], and 𝜙(𝑝𝑖, 𝑝𝑗) = I{𝑝𝑗>𝑝𝑖} for all 𝑖, 𝑗 ∈ [𝑛]. That is, voter 𝑖 delegates with fixed

probability 𝑝 and puts equal weight on all the more competent voters. In other words, if voter

𝑖 delegates, then 𝑖 does so to a more competent voter chosen uniformly at random. Note

that a voter with maximal competence will place 0 weight on all other voters, and hence is

guaranteed not to delegate. We refer to 𝑀𝑈
𝑝 as the Upward Delegation Model parameterized

by 𝑝.

Theorem 5 (Upward Delegation Model). For all 𝑝 ∈ (0, 1), 𝑀𝑈
𝑝 satisfies probabilistic do no

harm and probabilistic positive gain with respect to the class D𝐶 of all continuous distribu-

tions.

The proof of the theorem relies on novel bounds we drive on the largest bin size in an

infinite Pólya’s urn process [49, 216]. We first formally define the process and present our

bound in Lemma 15. A Pólya’s urn process with attachment probability 𝑝 begins at time

𝑡 = 1 with one ball in one bin. At each timestep 𝑡 > 1, a new ball arrives. With probability

1−𝑝, a new bin is created and the new ball is placed in that bin; with probability 𝑝, the ball

joins an existing bin, and it does so with probability proportional to the number of balls in
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the bins, i.e., if there are three bins containing 1, 2, and 3 balls respectively, it joins each

with probability 1/6, 2/6, and 3/6 respectively. We then have the following.

Lemma 15. For all 𝑝 ∈ (0, 1) and 𝑡 ≥ 1, let 𝐿𝑝
𝑡 be the random variable denoting the

maximum number of balls in any bin after running the infinite Pólya’s urn process with new-

bin probability 𝑝 for 𝑡 steps. Then, there exists 𝛿 < 1 depending only on 𝑝 such that for all

𝑇 ≥ 1, Pr[𝐿𝑝
𝑇 ≤ 𝑇 𝛿] = 1− 𝑜(1).

Proof. Fix the parameter 𝑝 ∈ (0, 1). Choose 𝛾 to be a constant such that 3/4 < 𝛾 < 1;

note that 𝑝 + (1 − 𝑝)𝛾 < 𝑝 + (1 − 𝑝) = 1. Choose 𝛿 (for the lemma statement) such that

𝑝 + (1 − 𝑝)𝛾 < 𝛿 < 1. Notice that we can choose 𝛾 and 𝛿 such that 𝛿 is arbitrarily close to

3/4 + 𝑝/4.

Let 𝐵(𝑘) denote the 𝑘-th bin. Let 𝑈
(𝑘)
𝑡 be the size of 𝐵(𝑘) at time 𝑡. Since there are

at most 𝑡 bins by time 𝑡, notice that 𝐿𝑝
𝑡 = max(𝑈

(1)
𝑡 , . . . , 𝑈

(𝑡)
𝑡 ). In general, our approach

will be to analyze bins separately and show that 𝑈
(𝑘)
𝑇 remains below 𝑇 𝛿 with high enough

probability so that we can union bound over all possible 𝑘 ≤ 𝑇 . That is, we will show

𝑇∑︁
𝑘=1

Pr[𝑈
(𝑘)
𝑇 > 𝑇 𝛿] = 𝑜(1),

which also implies Pr[𝐿𝑝
𝑇 > 𝑇 𝛿] = 𝑜(1). Hence, it will be useful to consider this process

more formally from the perspective of the 𝑘th bin, 𝐵(𝑘). The 𝑘th bin 𝐵(𝑘) is “born” at some

time 𝑡 ≥ 𝑘, the 𝑘th time in which a ball does not join a preexisting bin, at which point

𝑈
(𝑘)
𝑡 = 1 (prior to this, 𝑈 (𝑘)

𝑡 = 0). More specifically, the first bin 𝐵(𝑘) is guaranteed to be

born at time 𝑡 = 1 and for all other 𝑘 > 1, 𝐵(𝑘) will be born at time 𝑡 ≥ 𝑘 with probability(︀
𝑡−1
𝑘−1

)︀
(1 − 𝑝)𝑘𝑝𝑡−𝑘, although these exact probabilities will be unimportant for our analysis.

Once born, we have the following recurrence on 𝑈
(𝑘)
𝑡 describing the probability 𝐵(𝑘) will be
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chosen at time 𝑡:

𝑈
(𝑘)
𝑡 =

⎧⎪⎪⎨⎪⎪⎩
𝑈

(𝑘)
𝑡−1 + 1 with probability 𝑝·𝑈(𝑘)

𝑡−1

𝑡−1

𝑈
(𝑘)
𝑡−1 with probability 1− 𝑝·𝑈(𝑘)

𝑡−1

𝑡−1
.

Let 𝑊
(𝑘)
𝑡 be the process for the size of bin that is born at time 𝑘. That is, 𝑊 (𝑘)

𝑘 = 1, and

for 𝑘 > 𝑡, 𝑊 (𝑘)
𝑡 follows the exact same recurrence as 𝑈

(𝑘)
𝑡 . Note that since the 𝑘th bin 𝐵(𝑘)

can only be born at time 𝑘 or later, we have that 𝑊 (𝑘)
𝑡 stochastically dominates 𝑈

(𝑘)
𝑡 for all

𝑘 and 𝑡. Hence, it suffices to show that

𝑇∑︁
𝑘=1

Pr[𝑊
(𝑘)
𝑇 > 𝑇 𝛿] = 𝑜(1). (3.10)

We split our analysis into two parts: the first consider the first 𝑇 𝛾 bins, while the second

considers the last 𝑇 − 𝑇 𝛾 bins.

We first show that
∑︀𝑇 𝛾

𝑘=1 P[𝑊
(𝑘)
𝑇 > 𝑇 𝛿] = 𝑜(1). Note that the expectation of 𝑊 (𝑘)

𝑛

E[𝑊 (𝑘)
𝑛 ] =

Γ(𝑛+ 𝑝)Γ(𝑘)

Γ(𝑝+ 𝑘)Γ(𝑛)
(3.11)

for all 𝑘 ≤ 𝑛, where Γ represents the Gamma function.

E[𝑊 (𝑘)
𝑇 ] =

Γ(𝑇 + 𝑝)Γ(𝑘)

Γ(𝑝+ 𝑘)Γ(𝑇 )

for all 𝑘 ≤ 𝑇 , where Γ represents the Gamma function. The second was showing

𝑇 𝛾∑︁
𝑘=1

P[𝑊 (𝑘)
𝑇 > 𝑛𝛿] = 𝑜(1).
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Recall that 𝑊
(𝑘)
𝑘 = 1 and we have the following recurrence for all 𝑡 > 𝑘:

𝑊
(𝑘)
𝑡 =

⎧⎪⎪⎨⎪⎪⎩
𝑊

(𝑘)
𝑡−1 + 1 with probability 𝑝·𝑊 (𝑘)

𝑡−1

𝑡−1

𝑊
(𝑘)
𝑡−1 with probability 1− 𝑝·𝑊 (𝑘)

𝑡−1

𝑡−1
.

By the tower property of expectation, for all 𝑡 ≥ 𝑘 + 1,

E[𝑊 (𝑘)
𝑡 ] = E[E[𝑊 (𝑘)

𝑡 | 𝑊 (𝑘)
𝑡−1]]

= E[𝑊 (𝑘)
𝑡−1(1 +

𝑝

𝑡− 1
)]

= E[𝑊 (𝑘)
𝑡−1](1 +

𝑝

𝑡− 1
).

Thus, by a straightforward induction argument and the fact that E[𝑊 (𝑘)
𝑘 ] = 1,

E[𝑊 (𝑘)
𝑇 ] = E[𝑊 (𝑘)

𝑘 ]
𝑇−1∏︁
𝑖=𝑘

(1 +
𝑝

𝑖
) =

𝑇−1∏︁
𝑖=𝑘

(1 +
𝑝

𝑖
).

Expanding this, we have

𝑇−1∏︁
𝑖=𝑘

(1 +
𝑝

𝑖
) =

𝑇−1∏︁
𝑖=𝑘

𝑖+ 𝑝

𝑖

=
1∏︀𝑇−1
𝑖=𝑘 𝑖

·
𝑇−1∏︁
𝑖=𝑘

(𝑖+ 𝑝)

=
(𝑘 − 1)!

(𝑇 − 1)!
·
∏︀𝑇−1

𝑖=0 (𝑖+ 𝑝)∏︀𝑘−1
𝑖=0 (𝑖+ 𝑝)

=
(𝑘 − 1)!

(𝑇 − 1)!

Γ(𝑝+𝑇 )
Γ(𝑝)

Γ(𝑘+𝑝)
Γ(𝑝)

=
Γ(𝑇 + 𝑝)Γ(𝑘)

Γ(𝑝+ 𝑘)Γ(𝑇 )
,

where the fourth equality holds because Γ(𝑥 + 1) = 𝑥Γ(𝑥) for all 𝑥 ∈ R, and the last uses

105



the fact that Γ(𝑛) = (𝑛− 1)! for all 𝑛 ∈ N. This proves (3.11).

Using this along with Gautchi’s inequality [96], (𝑡 + 𝑝 − 1)𝑝 ≤ Γ(𝑝+𝑡)
Γ(𝑡)

≤ (𝑡 + 𝑝)𝑝,

to approximate the Γ terms, we can apply Markov’s inequality and use algebra to get∑︀𝑛𝛾

𝑘=1 P[𝑊 𝑘
𝑛 > 𝑛𝛿] = 𝑜(1).

In detail, we use Markov’s inequality to show that for all 𝑘,

Pr
[︁
𝑊

(𝑘)
𝑇 > 𝑇 𝛿

]︁
≤ E[𝑊 (𝑘)

𝑇 ]

𝑇 𝛿
=

1

𝑇 𝛿
· Γ(𝑇 + 𝑝)

Γ(𝑇 )
· Γ(𝑘)

Γ(𝑘 + 𝑝)
.

Hence,

𝑇 𝛾∑︁
𝑘=1

Pr[𝑊
(𝑘)
𝑇 > 𝑇 𝛿] ≤

𝑇 𝛾∑︁
𝑘=1

1

𝑇 𝛿
· Γ(𝑇 + 𝑝)

Γ(𝑇 )
· Γ(𝑘)

Γ(𝑘 + 𝑝)
=

1

𝑇 𝛿
· Γ(𝑇 + 𝑝)

Γ(𝑇 )
·

𝑇 𝛾∑︁
𝑘=1

Γ(𝑘)

Γ(𝑘 + 𝑝)
.

What remains to be shown is that

1

𝑇 𝛿
· Γ(𝑇 + 𝑝)

Γ(𝑇 )
·

𝑇 𝛾∑︁
𝑘=1

Γ(𝑘)

Γ(𝑘 + 𝑝)
= 𝑜(1).

To do this, we will use Gautschi’s inequality [96] which states that for all 𝑥 > 0, since

𝑝 ∈ (0, 1),

(𝑥+ 𝑝− 1)𝑝 ≤ Γ(𝑝+ 𝑥)

Γ(𝑥)
≤ (𝑥+ 𝑝)𝑝
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We then have that

1

𝑇 𝛿
· Γ(𝑇 + 𝑝)

Γ(𝑇 )
·

𝑇 𝛾∑︁
𝑘=1

Γ(𝑘)

Γ(𝑘 + 𝑝)
≤ (𝑇 + 𝑝)𝑝

𝑇 𝛿
·

𝑇 𝛾∑︁
𝑘=1

1

(𝑘 + 𝑝− 1)𝑝

=
(𝑇 + 𝑝)𝑝

𝑇 𝛿
·

(︃
1

𝑝𝑝
+

1

(1 + 𝑝)𝑝
+

𝑇 𝛾∑︁
𝑘=3

1

(𝑘 + 𝑝− 1)𝑝

)︃

≤ (𝑇 + 𝑝)𝑝

𝑇 𝛿
·

(︃
1

𝑝𝑝
+

1

(1 + 𝑝)𝑝
+

𝑇 𝛾∑︁
𝑘=3

1

(𝑘 − 1)𝑝

)︃

=
(𝑇 + 𝑝)𝑝

𝑇 𝛿
·

(︃
1

𝑝𝑝
+

1

(1 + 𝑝)𝑝
+

𝑇 𝛾−1∑︁
𝑘=2

1

𝑘𝑝

)︃

≤ (𝑇 + 𝑝)𝑝

𝑇 𝛿
·

(︃
1

𝑝𝑝
+

1

(1 + 𝑝)𝑝
+

𝑇 𝛾∑︁
𝑘=2

1

𝑘𝑝

)︃

≤ (𝑇 + 𝑝)𝑝

𝑇 𝛿
·
(︂

1

𝑝𝑝
+

1

(1 + 𝑝)𝑝
+

∫︁ 𝑇 𝛾

1

1

𝑥𝑝
𝑑𝑥

)︂
=

(𝑇 + 𝑝)𝑝

𝑇 𝛿
·
(︂

1

𝑝𝑝
+

1

(1 + 𝑝)𝑝
+

𝑥1−𝑝

1− 𝑝

⃒⃒⃒𝑇 𝛾

1

)︂
=

(𝑇 + 𝑝)𝑝

𝑇 𝛿
·
(︂
𝑇 𝛾(1−𝑝)

1− 𝑝
+

1

𝑝𝑝
+

1

(1 + 𝑝)𝑝
− 1

1− 𝑝

)︂
.

Notice that asymptotically, this upper bound is 𝑂(𝑇−𝛿+𝑝+𝛾·(1−𝑝)). By our choice of 𝛿, 𝛿 >

𝑝+ 𝛾 · (1− 𝑝), so this implies that it is is 𝑜(1), as desired.

Now consider the final 𝑇 − 𝑇 𝛾 components. We will prove that Pr[𝑊
(𝑇 𝛾+1)
𝑇 > 𝑇 𝛿] =

𝑜(1/𝑇 ). Since 𝑊
(𝑘)
𝑇 stochastically dominates 𝑊 (𝑘′)

𝑇 for all 𝑘′ ≥ 𝑘, this implies that Pr[𝑊 (𝑘)
𝑇 >

𝑇 𝛿] = 𝑜(1/𝑇 ) for all 𝑘 ≥ 𝑇 𝛾 + 1. Hence,

𝑇∑︁
𝑘=𝑇 𝛾+1

Pr
[︁
𝑊

(𝑘)
𝑇 > 𝑇 𝛿

]︁
= 𝑜(1).

To do this, we compare the 𝑊
(𝑇 𝛾+1)
𝑡 process to another process, 𝑉𝑡. We define 𝑉0 = 1,
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and for 𝑡 > 0, take 𝑉𝑡 to satisfy the following recurrence:

𝑉𝑡 =

⎧⎪⎪⎨⎪⎪⎩
𝑉𝑡−1 + 1 with probability 𝑉𝑡−1

𝑡+𝑛𝛾

𝑉𝑡−1 with probability 1− 𝑉𝑡−1

𝑡+𝑛𝛾 .

This is identical to the 𝑊 recurrence with 𝑡 shifted down by 𝑛𝛾+1 except without the 𝑝 factor.

Hence, 𝑉𝑇−𝑇 𝛾+1 clearly stochastically dominates 𝑊 (𝑇 𝛾+1)
𝑇 . For convenience in calculation, we

will instead focus on bounding 𝑉𝑇 which itself stochastically dominates 𝑉𝑇−𝑇 𝛾+1.

Next, note that the 𝑉𝑡 process is isomorphic to the following classic Pólya’s urn process.

We begin with two bins, one with a single ball and the other with 𝑛𝛾 balls. At each time, a

new ball is added to one of the two bins with probability proportional to the bin size. The

process 𝑉𝑡 is isomorphic to the size of the one-ball urn after 𝑡 steps. Classic results tell us

that for fixed starting bin sizes 𝑎 and 𝑏, as the number of steps grows large, the possible

proportion of balls in the 𝑎-bin follows a Beta(𝑎, 𝑏) distribution [76, 127, 158, 168, 193].

The mean and variance of such a Beta distribution would be sufficient to prove our nec-

essary concentration bounds; however, for us, we need results after exactly 𝑇 −𝑇 𝛾 steps, not

simply in the limit. Hence, we will be additionally concerned with the speed of convergence

to this Beta distribution.

Let 𝑋𝑇 = 𝑉𝑇

𝑇
and 𝑍𝑇 ∼ Beta(1, 𝑇 𝛾). From Janson [125], we know that the rate of

convergence is such that, for any 𝑝 ≥ 1

ℓ𝑝(𝑋𝑇 , 𝑍𝑇 ) = Θ(1/𝑇 ) (3.12)

where ℓ𝑝 is the minimal 𝐿𝑝 metric, defined as

ℓ𝑝(𝑋, 𝑌 ) = inf
{︁
E[|𝑋 ′ − 𝑌 ′|𝑝]1/𝑝 | 𝑋 ′ 𝑑

= 𝑋, 𝑌 ′ 𝑑
= 𝑌

}︁
,
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which can be thought of as the minimal 𝐿𝑝 norm over all possible couplings between 𝑋 and 𝑌 .

For our purposes, the only fact about the ℓ𝑝 metric we will need is that ℓ𝑝(𝑋, 0) = E[|𝑋|𝑝]1/𝑝

where 0 is the identically 0 random variable. Since ℓ𝑝 is in fact a metric, the triangle

inequality tells us that ℓ𝑝(0, 𝑋𝑛) ≤ ℓ𝑝(0, 𝑍𝑛)+ℓ𝑝(𝑍𝑛, 𝑋𝑛), so, combining with (3.12), we have

that

E[|𝑋𝑇 |𝑝]1/𝑝 ≤ E[|𝑍𝑇 |𝑝]1/𝑝 +Θ(1/𝑇 ) (3.13)

for all 𝑝 ≥ 1.

Note that since 𝑍𝑇 ∼ Beta(1, 𝑇 𝛾),

E[𝑍𝑇 ] =
1

1 + 𝑇 𝛾
= Θ(𝑇−𝛾)

and

Var[𝑍𝑇 ] =
𝑇 𝛾

(2 + 𝑇 𝛾)(1 + 𝑇 𝛾)2
= Θ(𝑇−2𝛾).

Given these results, we are ready to prove that 𝑉𝑇 is smaller than 𝑇 𝛿 with probability

1−𝑜(1/𝑇 ). Precisely, we want to show that Pr[𝑋𝑇 ≥ 𝑇 𝛿−1] = 𝑜(1). By Chebyshev’s inequality,

Pr[𝑋𝑇 ≥ 𝑇 𝛿−1] ≤ Var[𝑋𝑇 ]

(𝑇 𝛿−1 − E[𝑋𝑇 ])2
.

Inequality (3.13) with 𝑝 = 1 along with the fact that 𝑋𝑇 and 𝑍𝑇 are always nonnegative

implies that E[𝑋𝑇 ] ≤ E[𝑍𝑇 ] + Θ(1/𝑇 ) = 𝑂(𝑇−𝛾). Hence, 𝑇 𝛿−1 − E[𝑋𝑇 ] = Ω(𝑇 𝛿−1) since

𝛿 − 1 > −1/2 > −𝛾. We can therefore write:

(︀
𝑇 𝛿−1 − E[𝑋𝑇 ]

)︀2
= Ω(𝑇−2(𝛿−1)). (3.14)
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Inequality (3.13) with 𝑝 = 2 implies that
√︀
E[𝑋2

𝑇 ] ≤
√︀

E[𝑍2
𝑇 ] + Θ(1/𝑇 ). Hence,

E[𝑋2
𝑇 ] ≤ (Θ(1/𝑇 ) +

√︁
E[𝑍2

𝑇 ])
2

≤ (Θ(1/𝑇 ) +
√︀
E[𝑍𝑇 ]2 +Var[𝑍𝑇 ])

2

≤ (Θ(1/𝑇 ) +
√︀
Θ(𝑇−2𝛾))2

= (Θ(1/𝑇 ) + Θ(𝑇−𝛾))2

= Θ(𝑇−𝛾)2

= Θ(𝑇−2𝛾).

Next, note that Var[𝑋𝑇 ] ≤ E[𝑋2
𝑇 ], so

Var[𝑋𝑇 ] = 𝑂(𝑇−2𝛾) (3.15)

as well. Combining (3.14) and (3.15), we have that

Pr[𝑋𝑇 ≥ 𝑇 𝛿−1] ≤ Var[𝑋𝑇 ]

(𝑇 𝛿−1 − E[𝑋𝑇 ])2
= 𝑂

(︀
𝑇−2𝛾+2(1−𝛿)

)︀
.

Since −2𝛾 + 2(1 − 𝛿) < 1, given our assumption that 3/4 < 𝛾 < 𝛿, it follows that

Pr[𝑋𝑇 ≥ 𝑇 𝛿−1] = 𝑜(1/𝑇 ), which allows us to conclude that

𝑇∑︁
𝑘=𝑇 𝛾+1

Pr[𝑊
(𝑘)
𝑇 > 𝑇 𝛿] = 𝑜(1).

Since we showed earlier that
∑︀𝑇 𝛾

𝑘=1 Pr[𝑊
(𝑘)
𝑇 > 𝑇 𝛿] = 𝑜(1), we have that

𝑇∑︁
𝑘=1

Pr[𝑊
(𝑘)
𝑇 > 𝑇 𝛿] = 𝑜(1),
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as needed.

We are now ready to prove the theorem about Upward Delegation.

Proof of Theorem 5. To prove the theorem, we will prove that the Upward Delegation Model

with respect to D𝐶 satisfies (3.1), (3.2), (3.3), which implies that the model satisfies proba-

bilistic do no harm and positive gain by Lemma 13.

Upward Delegation satisfies (3.1)

To do this, we will simply show that the component sizes in 𝐺𝑛 sampled according to

P𝐷,𝑀,𝑛 have the same distribution as the bin sizes in a Pólya’s urn process with attachment

probability 𝑝, and hence max-weight(𝐺𝑛) follows the same distribution as 𝐿𝑝
𝑛. Once we have

shown this, (3.1) follows immediately from Lemma 15 as 𝑛𝛿 ∈ 𝑜(𝑛).

To that end, fix some sampled competencies 𝑝𝑛. Recall that each entry 𝑝𝑖 in 𝑝𝑛 is

sampled i.i.d. from 𝒟, a continuous distribution. Hence, almost surely, no two competencies

are equal. From now on, we condition on this probability 1 event. Now consider sampling

the delegation graph 𝐺𝑛. By the design of the model 𝑀𝑈
𝑝 , we can consider a random process

for generating 𝐺𝑛 that is isomorphic to sampling according to P𝐷,𝑀,𝑛 as follows: first, order

the competencies 𝑝(1) > 𝑝(2) > · · · > 𝑝(𝑛) (note that such strict order is possible by our

assumption that all competencies are different) and rename the voters such that voter 𝑖

has competence 𝑝(𝑖); then construct 𝐺𝑛 iteratively by adding the voters one at a time in

decreasing order of competencies, voter 1 at time 1, voter 2 at time 2, and so on.

We start with the voter with the highest competence, voter 1. By the choice of 𝜙, voter

1 places weight 0 on every other voter and hence by definition does not delegate. This

voter forms the first component in the graph 𝐺𝑛, which we call 𝐶(1). Then, we add voter 2

who either delegates to voter 1 joining component 𝐶(1) with probability 𝑝, or starts a new

component 𝐶(2) with probability 1 − 𝑝. Next, we add voter 3. If 2 ∈ 𝐶(1) (that is, if 2

delegated to 1), 3 either delegates to 1 (either directly or through 2 by transitivity) with
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probability 𝑝 or she starts a new component 𝐶(2). If 2 ∈ 𝐶(2), then 3 either delegates to

1 with probability 𝑝/2 and is added to 𝐶(1), or delegates to 2 with probability 𝑝/2 and is

added to 𝐶(2), or starts a new component 𝐶(3). In general, at time 𝑡, if there are 𝑘 existing

components 𝐶(1), . . . , 𝐶(𝑘), voter 𝑡 either joins each component 𝐶(𝑗) with probability 𝑝|𝐶(𝑗)|
𝑡−1

or starts a new component with probability 1 − 𝑝. To construct 𝐺𝑛, we run this process

for 𝑛 steps. Notice that this is identical to the Pólya’s urn process with bins 𝐵(𝑘) and balls

replaced with components 𝐶(𝑘) and voters being run for 𝑛 steps, as needed.

Upward Delegation satisfies (3.2)

We will show there exists 𝛼 ∈ (0, 1) such that
∑︀𝑛

𝑖=1 weight𝑖(𝐺𝑛) ·𝑝𝑖−
∑︀𝑛

𝑖=1 𝑝𝑖 ≥ 2𝛼𝑛 with

high probability, so (3.2) is satisfied. Note that in the present scheme, cycles are impossible,

so do need to worry about ignored voters.

Since 𝒟 is a continuous distribution, there exists 𝑎 < 𝑏 such that 𝜋𝑎 := 𝒟[{𝑝 : 𝑝 < 𝑎}] > 0

and 𝜋𝑏 := 𝒟[{𝑝 : 𝑝 > 𝑏}] > 0. Let 𝑁𝑎,𝑛(𝑝𝑛) be the number of voters in 𝑝𝑛 with competence

𝑝𝑖 < 𝑎 and 𝑁𝑏,𝑛(𝑝𝑛) be the number of voters with competence 𝑝𝑖 > 𝑏. When we sample

competencies, since each is chosen independently, 𝑁𝑎,𝑛 ∼ Bin(𝑛, 𝜋𝑎) and 𝑁𝑏,𝑛 ∼ Bin(𝑛, 𝜋𝑏).

By Hoeffding’s inequality (Lemma 14) and the union bound, with probability 1− 𝑜(1), there

will be at least 𝜋𝑎/2 · 𝑛 voters with competence 𝑝𝑖 < 𝑎 and 𝜋𝑏/2 · 𝑛 voters with competence

𝑝𝑖 > 𝑏. Indeed,

𝒟𝑛[𝑁𝑎,𝑛 >
𝑛𝜋𝑎

2
, 𝑁𝑏,𝑛 >

𝑛𝜋𝑏

2
] = 1−𝒟𝑛[{𝑁𝑎,𝑛 ≤ 𝑛𝜋𝑎

2
} ∪ {𝑁𝑏,𝑛 ≤ 𝑛𝜋𝑏

2
}]

≥ 1− (𝒟𝑛[𝑁𝑎,𝑛 ≤ 𝑛𝜋𝑎

2
] +𝒟𝑛[𝑁𝑏,𝑛 ≤ 𝑛𝜋𝑏

2
])

≥ 1− exp(−𝑛𝜋2
𝑎

2
)− exp(−𝑛𝜋2

𝑏

2
),

(3.16)

where the first line comes from De Morgan’s law, the second from the union bound, and the

last from Heoffding’s inequality (Lemma 14).

Conditioned on this occurring, each voter with competence 𝑝𝑖 < 𝑎 has probability at
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least 𝑝𝜋𝑏/2 of delegating to a voter with competence at least 𝑏. As they each decide to do

this independently, the number 𝑁𝑎𝑏,𝑛 of 𝑛 voters deciding to do this stochastically dominates

a random variable following the Bin(𝜋𝑎/2 · 𝑛, 𝑝 · 𝜋𝑏/2) distribution. We can again apply

Hoeffding’s inequality to conclude that with probability 1 − 𝑜(1), at least 𝜋𝑎 · 𝜋𝑏 · 𝑝/8 · 𝑛

voters do so. Indeed,

𝒟[𝑁𝑎𝑏,𝑛 >
𝑛𝑝𝜋𝑎𝜋𝑏

8
| 𝑁𝑎,𝑛 >

𝑛𝜋𝑎

2
, 𝑁𝑏,𝑛 >

𝑛𝜋𝑏

2
] ≥ 𝒟[Bin(

𝑛𝜋𝑎

2
,
𝑝𝜋𝑏

2
) >

𝑛𝑝𝜋𝑎𝜋𝑏

8
]

≥ 1− exp(−𝑛𝑝2𝜋𝑎𝜋
2
𝑏

4
),

(3.17)

where the first inequality holds because 𝑁𝑎𝑏,𝑛 stochastically dominates the corresponding

binomial random variable and the second holds by Hoeffding’s inequality. Finally, using

(3.16) and (3.17), we have

𝒟[𝑁𝑎𝑏,𝑛 >
𝑛𝑝𝜋𝑎𝜋𝑏

8
] ≥ 𝒟[𝑁𝑎𝑏,𝑛 >

𝑛𝑝𝜋𝑎𝜋𝑏

8
| 𝑁𝑎,𝑛 >

𝑛𝜋𝑎

2
, 𝑁𝑏,𝑛 >

𝑛𝜋𝑏

2
]

· 𝒟[𝑁𝑎,𝑛 >
𝑛𝜋𝑎

2
, 𝑁𝑏,𝑛 >

𝑛𝜋𝑏

2
]

≥ 1− 𝑜(1).

Under these upward delegation models, delegations can only increase the total compe-

tence of all voters. Hence,

𝑛∑︁
𝑖=1

dels𝑖(𝐺𝑛) · 𝑝𝑖 −
𝑛∑︁

𝑖=1

𝑝𝑖 ≥ (𝑏− 𝑎)𝑁𝑎𝑏.𝑛.

Each of these 𝜋𝑎 · 𝜋𝑏 · 𝑝/8 · 𝑛 voters results in a competence increase of at least 𝑏− 𝑎. Hence,

under these high probability events, the total competence increase is at least (𝑏−𝑎)·𝜋𝑎·𝜋𝑏·𝑝/8·

𝑛. Indeed, since 𝒟[𝑁𝑎𝑏,𝑛 > 𝑛𝑝𝜋𝑎𝜋𝑏

8
] = 1− 𝑜(1), this implies 𝒟[

∑︀𝑛
𝑖=1 dels𝑖(𝐺𝑛) · 𝑝𝑖 −

∑︀𝑛
𝑖=1 𝑝𝑖 >

𝑛𝑝𝜋𝑎𝜋𝑏

8
] = 1 − 𝑜(1). By choosing 𝛼 = 𝑝𝜋𝑎𝜋𝑏

8
(𝑏 − 𝑎), we see that there is an 𝛼 · 𝑛 increase in

competence with high probability, as needed.
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We have proved that for any continuous distribution 𝒟, and for well-behaved realizations

of 𝑝𝑛 which occur with high probability, the graph generated from the random delegation

process yields an increase in the expected sum of the votes of at least 𝛼 ·𝑛. We can then con-

clude that 𝑀𝑈
𝑝 satisfies Equation (3.2) with respect to the class of continuous distributions.

Upward Delegation satisfies (3.3)

We now show that there exists a distribution 𝒟 such that
∑︀𝑛

𝑖=1 𝑝𝑖 + 𝛼𝑛 ≤ 𝑛/2 ≤∑︀𝑛
𝑖=1 weight𝑖(𝐺𝑛) · 𝑝𝑖 − 𝛼𝑛 with probability 1 − 𝑜(1) for some 𝛼 > 0. This implies that

the model satisfies probabilistic positive gain by Lemma 13, and will conclude the proof.

We take 𝒟 to be 𝒟𝜂, the uniform distribution 𝒰 [0, 1− 2𝜂] for some small 0 < 𝜂 < 𝑝/512.

Let 𝛼 = 𝜂/2. Clearly, 𝜇𝒟𝜂 , the mean of 𝐷𝜂, is 1/2 − 𝜂. Since each 𝑝𝑖
𝑖.𝑖.𝑑.∼ 𝒟𝜂, the 𝑝𝑖s are

bounded independent random variables with mean 1/2−𝜂, so Hoeffding’s inequality directly

implies that
∑︀𝑛

𝑖=1 𝑝𝑖 ≤ 𝑛/2− 𝑛𝜂/2 = 𝑛/2− 𝑛𝛼 with high probability.

Now consider ℰ𝐹 , the event consisting of instances (𝑝𝑛, 𝐺𝑛) such that
∑︀𝑛

𝑖=1 weight𝑖(𝐺𝑛) ·

𝑝𝑖 ≥ 𝑛/2+𝑛𝛼. We denote by ℰ𝐷 the event that
∑︀𝑛

𝑖=1 𝑝𝑖 ≥ 𝑛/2− 3𝑛𝜂/2. The same reasoning

as before implies that Pr𝒟𝜂 ,𝑀𝑈
𝑝 ,𝑛(ℰ𝐷) = 1− 𝑜(1).

Let 𝑎 = 1/4 − 𝜂/2 and 𝑏 = 1/2 − 𝜂, so we have that 𝜋𝑎 := 𝒟𝜂[𝑝𝑖 < 𝑎] = 1/4 and

𝜋𝑏 := 𝒟𝜂[𝑝𝑖 > 𝑏] = 1/2. We proved in the preceding derivation that
∑︀𝑛

𝑖=1 weight𝑖(𝐺𝑛) · 𝑝𝑖 −∑︀𝑛
𝑖=1 𝑝𝑖 >

𝑛𝑝𝜋1𝜋𝑏

8
= 𝑛𝑝

64
(1− 𝜂) with high probability. Hence, if both this and ℰ𝐷 occur, which

is the case with high probability, by the union bound, it follows that
∑︀𝑛

𝑖=1 weight𝑖(𝐺𝑛) · 𝑝𝑖 >

𝑛/2 + 𝑛( 𝑝
128

(1− 𝜂)− 3𝜂/2) with high probability.

Since 𝜂 < 𝑝
512

< 1/2, we have that

𝑝

128
(1− 𝜂)− 3𝜂/2 >

𝑝

256
− 3𝜂/2 > 2𝜂 − 3𝜂/2 = 𝜂/2 = 𝛼,

and we can conclude that ℰ𝐹 occurs with high probability. Hence, 𝑀𝑈
𝑝 satisfies Equa-
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tion (3.3).

3.4 Confidence-Based Delegation Model

We now explore a model according to which voters delegate with probability that is strictly

decreasing in their competence and when they do decide to delegate, they do so by picking

a voter uniformly at random. This models the case where voters do not need to know

anything about their peers’ competencies, but do have some sense of their own competence,

and delegate accordingly.

Formally, for any 𝑞, let 𝑀𝐶
𝑞 = (𝑞, 𝜙1) where 𝜙1(𝑝𝑖, 𝑝𝑗) = 1 for all 𝑖, 𝑗 ∈ [𝑛]. Voter 𝑖

puts equal weight on all the voters and hence samples one uniformly at random when they

delegate. We refer to 𝑀𝐶
𝑞 as the Confidence-Based Delegation Model.

Theorem 6 (Confidence-Based Delegation Model). All models 𝑀𝐶
𝑞 with monotonically de-

creasing 𝑞 satisfy probabilistic do no harm and probabilistic positive gain with respect to the

class D𝐶 of all continuous distributions.

Proof. We show that the Confidence-Based Model satisfy (3.1), (3.2) and (3.3).

Confidence-Based Delegation satisfies (3.1)

Fix some distribution 𝒟 ∈ D𝐶 . We show there exists 𝐶(𝑛) ∈ 𝑂(log 𝑛) such that (3.1)

holds.

Note that when sampling an instance (𝑝𝑛, 𝐺𝑛), the probability an arbitrary voter 𝑖 chooses

to delegate is precisely 𝑝 := E𝒟[𝑞]. To see this, consider how a voter 𝑖 chooses whether to

delegate: they first sample a competence 𝑝𝑖 ∼ 𝒟 and then sample whether or not to delegate

from Bern(𝑞(𝑝𝑖)). Treating this as a single process, it is clear that the overall probability of

choosing to delegate is exactly E𝒟[𝑞] by integrating out the competence.
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Further, since 𝒟 is continuous and 𝑞 is monotonically decreasing, 𝑝 ∈ (0, 1). When a

voter does decide to delegate, they do so by picking another voter uniformly at random.

Hence, we can consider the marginal distribution of delegation graphs directly (ignoring the

competencies). We will show that when sampling a delegation graph, for any specific voter

𝑖, with probability 1−𝑜(1/𝑛), dels𝑖(𝐺𝑛) ≤ 𝐶(𝑛), which implies weight𝑖(𝐺𝑛) ≤ 𝐶(𝑛). A union

bound over all 𝑛 voters implies max-weight(𝐺𝑛) ≤ 𝐶(𝑛) with probability 1− 𝑜(1).

To that end, we will describe a branching process similar to the well-known graph branch-

ing process [5], which has the property that the distribution of its size exactly matches the

distribution of dels𝑖(𝐺𝑛) for an arbitrary voter 𝑖. We will compare this process to a known

graph branching process that has size at most 𝑂(log 𝑛) with high probability. We will show

our process is sufficiently dominated such that it too has size at most 𝑂(log 𝑛) with high

probability. The branching process works as follows. Fix our voter 𝑖. We sample which other

voters end up in 𝑖’s “delegation tree” (i.e., its ancestors in 𝐺𝑛) dynamically over a sequence

of time steps. As is standard for these processes, all voters 𝑉 will be one of three types, live,

dead, or neutral. Dead voters are those whose “children” (i.e., voters who delegate to them)

we have already sampled. Live voters are voters who have decided to delegate, but whose

children have not yet been sampled. Neutral voters are still in the “pool” and have yet to

commit to a delegation. At time zero, 𝑖 is a live voter, there are no dead voters, and all other

voters 𝑉 ∖ {𝑖} are neutral. At each time step, we take some live voter 𝑗, sample which of

the neutral voters choose to delegate to 𝑗, add these voters as live vertices, and update 𝑗 as

dead. The procedure ends when there are no more live vertices, at which point the number

of delegations received by 𝑖 is simply the total number of dead vertices.

Let us now describe this more formally. Following the notation of Alon and Spencer [5],

let 𝑍𝑡 denote the number of voters we sample to delegate at time 𝑡. Let 𝑌𝑡 be the number of

live vertices at time 𝑡; we have that 𝑌0 = 1. At time 𝑡, we remove one live vertex and add

𝑍𝑡 more, so we have the recursion 𝑌𝑡 = 𝑌𝑡−1 − 1 + 𝑍𝑡. We let 𝑁𝑡 be the number of neutral
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vertices at time 𝑡. We have that 𝑁0 = 𝑛 − 1, and 𝑁𝑡 = 𝑁𝑡−1 − 𝑍𝑡. Note that after 𝑡 time

steps, there are 𝑡 dead vertices and 𝑌𝑡 live ones, so this is equivalent to 𝑁𝑡 = 𝑛− 1− 𝑡− 𝑌𝑡.

To sample 𝑍𝑡, we fix some live voter 𝑗 and ask how many of the neutral voters chose to

delegate to 𝑗, conditioned on them not delegating to any of the dead voters. Note that when

sampling at this step, there are 𝑡− 1 dead voters and conditioned on the neutral voters not

delegating to the dead ones, the probability they delegate to any of the other 𝑛−𝑡 individuals

(not including themselves) is exactly 𝑝
𝑛−𝑡

, equally split between them for a total delegation

probability of 𝑝. Hence 𝑍𝑡 ∼ Bin(𝑁𝑡−1,
𝑝

𝑛−𝑡
) ∼ Bin(𝑛 − 𝑡 − 𝑌𝑡−1,

𝑝
𝑛−𝑡

). We denote by X𝐷
𝑛,𝑝

the random variable that counts the size of this branching process, i.e., the number of time

steps until there are no more live vertices. Note that the number of delegations received by

any voter has the same distribution as X𝐷
𝑛,𝑝.

Choose some constant 𝑝′ such that 𝑝 < 𝑝′ < 1. We will be comparing the X𝐷
𝑛,𝑝 to a

graph branching process X𝐺
𝑛,𝑝′ . The graph branching process is nearly identical, except the

probability each of the neutral vertex joins our component is independent of the number

of dead vertices and is simply 𝑝′

𝑛
. In other words, 𝑍𝑡 ∼ Bin(𝑁𝑡−1,

𝑝′

𝑛
). A key result about

this branching process is the probability of seeing a component of a certain size ℓ decreases

exponentially with ℓ. In other words, there is some constant 𝑐 such that

P𝒟,𝑀𝐶
𝑞 ,𝑛[X

𝐺
𝑛,𝑝′ ≤ 𝑐 log(𝑛)] = 1− 𝑜(1/𝑛).

Take 𝐶(𝑛) = 𝑐 log(𝑛). Note that as long as 𝑡 is such that 𝑝
𝑛−𝑡

≤ 𝑝′

𝑛
, the sampling in the

delegation branching process is dominated by the sampling in this graph branching process.

Hence, as long as 𝑝
𝑛−𝐶(𝑛)

≤ 𝑝′

𝑛
, P[X𝐷

𝑛,𝑝 ≤ 𝑐 log(𝑛)] ≥ P[X𝐺
𝑛,𝑝′ ≤ 𝑐 log(𝑛)]. Since 𝐶(𝑛) ∈

𝑂(log 𝑛), this is true for sufficiently large 𝑛, so for such 𝑛, P[X𝐷
𝑛,𝑝 ≤ 𝑐 log(𝑛)] = 1 − 𝑜(1/𝑛).

By a union bound over all 𝑛 voters, this implies the desired result.

Confidence Based Delegation satisfies (3.2)
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Let 𝑞 be such that 𝑞(𝑥) = 1 − 𝑞(𝑥), so 𝑞 represents the probability someone with com-

petence 𝑥 does not delegate. Notice that E𝒟[𝑞] is exactly the probability an arbitrary voter

will not delegate. Let 𝑞+(𝑥) = 𝑞(𝑥)𝑥 and let

𝜇* =
E𝒟[𝑞

+]

E𝒟[𝑞]
.

Expanding the definition, we see that 𝜇* is exactly the expected value of a voter’s competence,

conditioned on them not voting. Let 𝜇𝒟 the mean of the competence distribution 𝒟. We

first show that 𝜇* > 𝜇𝒟. Indeed, since both 𝑥 and 𝑞(𝑥) are strictly increasing functions of 𝑥,

the Fortuin–Kasteleyn–Ginibre (FKG) inequality [88] tells us that E𝒟[𝑞
+] > E𝒟[𝑞] ·E𝒟[𝑥] =

E𝒟[𝑞]·𝜇𝒟. This implies that the expected competence conditioned on not delegating is strictly

higher than the overall expected competence.

Next, we will show that for any constant 𝛾 > 0, with high probability, both
∑︀𝑛

𝑖=1 𝑝𝑖 ≤

(𝜇 + 𝛾)𝑛 and
∑︀𝑛

𝑖=1 weight𝑖(𝐺)𝑝𝑖 ≥ (𝜇* − 𝛾)𝑛. If we choose 𝛾 = (𝜇* − 𝜇)/3 and 𝛼 = 𝛾/2, it

follows that, with high probability,

𝑛∑︁
𝑖=1

weight𝑖(𝐺)𝑝𝑖 −
𝑛∑︁

𝑖=1

𝑝𝑖 ≥ 2𝛼𝑛,

implying that (3.2) is satisfied.

Since the 𝑝𝑖s are bounded independent variables, it follows directly from Heoffding’s

inequality that
∑︀𝑛

𝑖=1 𝑝𝑖 ≤ 𝑛(𝜇 + 𝛾) with high probability, so we now focus on showing∑︀𝑛
𝑖=1 weight𝑖(𝐺) · 𝑝𝑖 ≥ (𝜇* − 𝛾)𝑛 with high probability. To do this, we will first show

that, with high probability, the delegation graph 𝐺 satisfies dels𝑖(𝐺) ≤ 𝐶(𝑛) for all 𝑖 and

total-weight(𝐺) ≥ 𝑛− 𝐶(𝑛) log2 𝑛.

We showed in the earlier part of this proof that dels𝑖(𝐺) ≤ 𝐶(𝑛) with high probability. We

will now prove that P𝒟,𝑀𝐶
𝑞 ,𝑛[total-weight(𝐺) ≥ 𝑛−𝐶(𝑛) log2 𝑛 | dels𝑖(𝐺) ≤ 𝐶(𝑛)] = 1− 𝑜(1).
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To do this, we will first bound the number of voters that, with high probability, end up in

cycles. Fix a voter 𝑖 and sample 𝑖’s delegation tree. Voter 𝑖 will only end up in a cycle

if 𝑖 chooses to delegate to someone in this delegation tree. Since we are conditioning on

dels𝑖(𝐺) ≤ 𝐶(𝑛), the maximum size of this tree is 𝐶(𝑛). Hence, the total 𝜙 weight that

voter 𝑖 places on someone in the tree is at most 𝐶(𝑛), while the total weight they place on

all voters is 𝑛 − 1. Hence, the probability that 𝑖 delegates to someone in their tree can be

at most 𝑝 · 𝐶(𝑛)/(𝑛− 1). Since this is true for each voter 𝑖, the expected number of voters

in cycles is at most 𝑛𝑝 𝐶(𝑛)
(𝑛−1)

∈ 𝑂(log 𝑛). By Markov’s inequality, the probability that more

than log2 𝑛 voters are in cycles is at most 𝑛𝑝 𝐶(𝑛)

(𝑛−1) log2 𝑛
= 𝑂(1/ log 𝑛) = 𝑜(1).

Next, since we have conditioned on dels𝑖(𝐺) ≤ 𝐶(𝑛), no single voter, and in particular

no single voter in a cycle, can receive more than 𝐶(𝑛) delegations. So conditioned on the

high probability event that there are at most log2 𝑛 voters in cycles, there are at most

𝐶(𝑛) log2 𝑛 voters that delegate to those in cycles. This implies that total-weight(𝐺) ≥

𝑛− 𝐶(𝑛) log2 𝑛+ log2 𝑛 with high probability.

We now show that, conditioned on the graph satisfying these properties, the instance

(𝑝,𝐺) satisfies
∑︀𝑛

𝑖=1 weight𝑖(𝐺) · 𝑝𝑖 ≥ 𝑛(𝜇* − 𝛾) with high probability. Note that the compe-

tencies satisfy that those that don’t delegate are drawn i.i.d. from the distribution of compe-

tencies conditioned on not delegating, which has mean 𝜇*. Fix an arbitrary graph 𝐺 satisfying

the properties. Suppose 𝑀 is the set of voters that do not delegate. Note that for each 𝑖 ∈ 𝑀 ,

weight𝑖(𝐺) ≤ 𝐶(𝑛), by assumption. Further
∑︀

𝑖∈𝑀 weight𝑖(𝐺) ≥ 𝑛 − 𝐶(𝑛) log2(𝑛). Hence,

when we sample the non-delegator 𝑝𝑖s, E[
∑︀

𝑖∈𝑀 weight𝑖(𝐺) · 𝑝𝑖] ≥ (𝑛 − 𝐶(𝑛) log2(𝑛)) · 𝜇*.

Moreover,

Var[
∑︁
𝑖∈𝑀

weight𝑖(𝐺) · 𝑝𝑖] ≤
∑︁
𝑖∈𝑀

weight𝑖(𝐺)2 ≤ 𝐶(𝑛) · 𝑛.

This follows from the fact that Var[𝑝𝑖] ≤ 1 and that we have fixed the graph 𝐺 and hence

weight𝑖(𝐺) for each 𝑖, so these terms can all be viewed as constants. In addition, we know
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that, for each voter 𝑖, weight𝑖(𝐺) ≤ 𝐶(𝑛), and
∑︀𝑛

𝑖=1 weight𝑖(𝐺) ≤ 𝑛. Hence, we can directly

apply Chebyshev’s inequality:

P𝒟,𝑀𝐶
𝑞 ,𝑛

[︃∑︁
𝑖∈𝑀

weight𝑖(𝐺)𝑝𝑖 < 𝑛(𝜇* − 𝛾)

]︃
<

Var[
∑︀

𝑖∈𝑀 weight𝑖(𝐺)𝑝𝑖]

(E[
∑︀

𝑖∈𝑀 weight𝑖(𝐺)𝑝𝑖]− 𝑛(𝜇* − 𝛾))2

≤ 𝑛𝐶(𝑛)

(𝛾𝑛− 𝐶(𝑛) log2(𝑛)𝜇*)2

∈ 𝑜(1),

where the final step holds because the numerator is 𝑜(𝑛2) and the denominator is Ω(𝑛2).

Hence,
∑︀

𝑖∈𝑀 weight𝑖(𝐺)𝑝𝑖 ≥ 𝑛(𝜇* − 𝛾) with high probability, as needed.

To summarize, we have proved that, conditioned on dels𝑖(𝐺) ≤ 𝐶(𝑛) for all 𝑖 and

total-weight(𝐺) ≥ 𝑛 − 𝐶(𝑛) log2 𝑛,
∑︀𝑛

𝑖=1 weight𝑖(𝐺) · 𝑝𝑖 ≥ 𝑛(𝜇* − 𝛾/3) occurs with high

probability. Given that, conditioned on dels𝑖(𝐺) ≤ 𝐶(𝑛), total-weight(𝐺) ≥ 𝑛 − 𝐶(𝑛) log2 𝑛

occurs with high probability and that dels𝑖(𝐺) ≤ 𝐶(𝑛) occurs with high probability, we can

conclude by the chain rule that the intersection of these events hold with high probability.

Given that the probability of any of this event is greater than the probability of the inter-

section, we can conclude that
∑︀𝑛

𝑖=1 weight𝑖(𝐺) · 𝑝𝑖 ≥ 𝑛(𝜇* − 𝛾/3) occurs with probability

1− 𝑜(1), as desired.

Confidence-Based Delegation satisfies (3.3)

We finally show there exists a distribution 𝒟 such that
∑︀𝑛

𝑖=1 𝑝𝑖+𝛼𝑛 ≤ 𝑛/2 ≤
∑︀𝑛

𝑖=1 weight𝑖(𝐺𝑛)·

𝑝𝑖−𝛼𝑛 with probability 1−𝑜(1). This implies that the model 𝑀𝐶
𝑞 satisfies probabilistic pos-

itive gain by Lemma 13.

Using the notation of the analogous proof in Section 3.3, let 𝒟𝜂 = 𝒰 [0, 1 − 2𝜂] for

𝜂 ∈ [0, 1/2). Note that as a function of 𝜂, E𝒟𝜂 [𝑞
+]

E𝒟𝜂 [𝑞]
, the expected competence conditioned on
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not delegating, is continuous. Moreover, if 𝜂 = 0, then

E𝒟0 [𝑞
+]

E𝒟0 [𝑞]
> 𝜇𝒟0 = 1/2.

Hence, for sufficiently small 𝜂 > 0,

E𝒟𝜂 [𝑞
+]

E𝒟𝜂 [𝑞]
> 1/2 > 𝜇𝒟𝜂 .

We choose 𝒟𝜂 to be our distribution for this choice of 𝜂. As in the previous section, let

𝜇*
𝒟𝜂

=
E𝒟𝜂 [𝑞

+]

E[𝑞] . Note that 𝜇𝒟𝜂 = 1/2− 𝜂. Let 𝛾 = min(
1/2−𝜇𝒟𝜂

2
,
𝜇*
𝒟𝜂

−1/2

2
) and 𝛼 = 𝛾. By the

earlier argument for (3.2), we have that with high probability

𝑛∑︁
𝑖=1

𝑝𝑖 ≤ 𝑛(𝜇+ 𝛾) ≤ 𝑛/2− 𝛼𝑛

and
𝑛∑︁

𝑖=1

weight𝑖(𝐺)𝑝𝑖 ≥ 𝑛(𝜇* − 𝛾) ≥ 𝑛/2 + 𝛼𝑛.

By the union bound, we have that both occur simultaneously with high probability, so

(3.3) holds.

3.5 Continuous General Delegation Model

Finally, we study a model in which voters delegate with fixed probability, and they do so by

picking a voter according to a continuous increasing delegation function. This is a general

model in which delegations can either go to more or less competent neighbors but where

more competent voters are more likely to be chosen over less competent ones.

Formally, let 𝑀𝑆
𝑝,𝜙 = (𝑞𝑝, 𝜙) where 𝑞𝑝 is a constant function equal to 𝑝, that is, 𝑞𝑝(𝑥) = 𝑝
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for all 𝑥 ∈ [0, 1], and 𝜙(𝑥, 𝑦) is non-zero, continuous, and increasing in 𝑦. We then have the

following.

Theorem 7 (Continuous General Delegation Model). All models 𝑀𝑆
𝑝,𝜙 with 𝑝 ∈ (0, 1) and

𝜙 that is non-zero, continuous, and increasing in its second coordinate satisfy probabilistic

do no harm and probabilistic positive gain with respect to the class D𝐶 of all continuous

distributions.

Proof. Fix 𝑀𝑆
𝑝,𝜙 and 𝒟 ∈ D𝐶 . Note that since 𝜙 is continuous and always positive on

the compact set [0, 1]2, 𝜙 is in fact uniformly continuous and there are bounds 𝐿,𝑈 ∈ R+

such that 𝜙 is bounded in the interval [𝐿,𝑈 ]. Additionally, we can assume without loss of

generality that for all 𝑥 ∈ [0, 1], E𝒟[𝜙(𝑥, ·)] = 1. Indeed, E𝒟[𝜙(𝑥, ·)] is a positive, continuous

function of 𝑥, so replacing 𝜙 by 𝜙′(𝑥, 𝑦) = 𝜙(𝑥, 𝑦)/E𝒟[𝜙(𝑥, ·)] induces the same model and

satisfies the desired property.

The Continuous General Delegation Model satisfies (3.1).

Our goal is to show there is some 𝐶(𝑛) ∈ 𝑂(log 𝑛) such that, with high probability, no

voter receives more than 𝐶(𝑛) delegations. To do this, just as in the proof of Theorem 6,

we consider a branching process of the delegations received beginning with some voter 𝑖.

We will show that under minimal conditions on the sampled competencies (which all occur

with high probability), this branching process will be dominated by a well-known subcritical

multi-type Poisson branching process [29], which has size 𝑂(log 𝑛) with high probability.

For a fixed competence vector 𝑝𝑛, the branching process for the number of delegations

received by a voter 𝑖 works as follows. We keep track of three sets of voters: those that are

live at time 𝑡 (𝐿𝑡), those dead at time 𝑡 (𝐷𝑡), and those neutral at time 𝑡 (𝑁𝑡). Unlike in

the proof of Theorem 6, where it was sufficient to keep track of the number of voters in each

category, here we must keep track of the voter identities as well, as they do not all delegate

with the same probability. At time zero, the only live voter is voter 𝑖 and the rest are neutral,
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so 𝐿0 = {𝑖}, 𝐷0 = ∅, and 𝑁0 = [𝑛] ∖ {𝑖}. As long as there are still live voters, we sample the

next set of delegating voters 𝑍𝑡 in time 𝑡 by choosing some live voter 𝑗 ∈ 𝑅𝑡−1 and sampling

its children. Once 𝑗’s children are sampled, 𝑗 becomes dead, and 𝑗’s children become live.

All voters that did not delegate and were not delegated to remain neutral. The children are

sampled independently; the probability they are included is the probability they delegate to

𝑗 conditioned on them not delegating to the dead voters in 𝐷𝑡−1. For each voter 𝑘 ∈ 𝑁𝑡−1,

𝑘 will be included with probability

𝑝 · 𝜙(𝑝𝑘, 𝑝𝑗)∑︀
𝑘′∈[𝑛]∖(𝐷𝑡−1∪{𝑘}) 𝜙(𝑝𝑘, 𝑝𝑘′)

.

This is precisely the probability 𝑘 delegates to 𝑗 conditioned on them not delegating to any

voter in 𝐷𝑡−1. We continue this process until there are no more live voters, at which point

the number of delegations is simply the number of dead voters, or equivalently, the total

number of time steps. We denote by X𝐷
𝑝𝑛,𝑖

the size of the branching process parameterized

by competencies 𝑝𝑛 and a voter 𝑖 ∈ [𝑛].

Our goal will be to compare X𝐷
𝑝𝑛,𝑖

to the outcome of a well-known multi-type Poisson

branching process. In this branching process, there are a fixed finite number 𝑘 of types of

voters.7 The process itself is parameterized by a 𝑘×𝑘 matrix 𝑀 , where 𝑀𝜏𝜏 ′ is the expected

number of children of type 𝜏 ′ a voter of type 𝜏 will have. The process is additionally

parameterized by the type 𝜏 ∈ [𝑘] of the starting voter. The random variable 𝑌𝑡 keeps

track of the number of live voters of each type; it is a vector of length 𝑘, where the 𝜏th

entry is the number of live voters of type 𝜏 . Hence, 𝑌0 = 𝑒𝜏 , the (basis) vector with a 1

in entry 𝜏 and an entry 0 for all other types. We sample children by taking an arbitrary

live voter of type 𝜏 ′ (the 𝜏 ′ component in 𝑌𝑡−1 must be positive, indicating that there is

such a voter), and sampling its children 𝑍𝑡, which is also a vector of length 𝑘, each entry
7In the literature, these are often called particles, but to be consistent with our other branching processes,

we call them voters here.
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indicating the number of children of that type. The vector 𝑍𝑡 is sampled such that the 𝜏 ′′

entry is from the Pois(𝑀𝜏 ′𝜏 ′′) distribution. That is, children of different types are sampled

independently from a Poisson distribution, with the given expected value. We have the

recursion 𝑌𝑡 = 𝑌𝑡−1 + 𝑍𝑡 − 𝑒𝜏 ′ .

Note that this means that there is no “pool” of voters to choose from; in fact, it is possible

for this process to grow unboundedly large (see [5, Section 11.6] for the classical description

of the single-type Poisson branching process). Nonetheless, this process will still converge

often enough to remain useful. We denote by X𝑃
𝑀,𝜏 the random variable that gives the size

of this branching process, parameterized by expected-children matrix 𝑀 and starting voter

type 𝜏 ∈ [𝑘]. Such a branching process is considered sub-critical if the largest eigenvalue of

𝑀 is strictly less than 1 [29]. In such a case, if we begin with voter of any type 𝜏 ∈ [𝑘], the

probability of the branching process surviving ℓ steps decreases exponentially in ℓ. Hence,

there is some 𝑐 such that for all 𝜏 ∈ [𝑘],

P[X𝑃
𝑀,𝜏 ≤ 𝑐 log(𝑛)] = 1− 𝑜(1/𝑛).

To compare these branching processes, we make a sequence of adjustments to the original

branching process that at each step creates a dominating branching process slightly closer

in flavor to the multi-type Poisson. In the end, we will be left with a sub-critical multi-type

Poisson process that we can bound.

Fix some 𝜀 > 0, which is a parameter in all of our steps. Later, we will choose 𝜀 to be suffi-

ciently small (specifically, such that 𝑝 (1+𝜀)3

1−2𝜀
< 1) to ensure that the Poisson branching process

is sub-critical. To convert from our delegation branching process to the Poisson branching

process, we take a voter’s type to be their competence (which completely characterizes their

delegation behavior). However, to compare to the Poisson process, there must be a finite

number of types. Hence, we partition the interval [0, 1] into 𝐵 buckets, each of size 1/𝐵,
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such that voters in the same bucket delegate and are delegated to “similarly”. We choose 𝐵

large enough such that all points in [0, 1]2 within a distance of
√
2/𝐵 of each other differ in

𝜙 by at most 𝐿 ·𝜀. (Recall that the range of 𝜙 is in the interval [𝐿,𝑈 ].) This is possible since

𝜙 is uniformly continuous. Further, this implies any points (𝑥, 𝑦), (𝑥′, 𝑦′) within a square

with side length 1/𝐵 have the property that 𝜙(𝑥, 𝑦) ≤ 𝜙(𝑥′, 𝑦′) + 𝐿 · 𝜀 ≤ (1 + 𝜀) · 𝜙(𝑥′, 𝑦′).

Note that 𝐵 depends only on 𝜙 and 𝜀, and hence is a constant with respect to the number

of voters 𝑛.

We say a voter 𝑖 is of type 𝜏 if 𝜏−1
𝐵

< 𝑝𝑖 ≤ 𝜏
𝐵

for 1 ≤ 𝜏 ≤ 𝐵 (with a non-strict inequality

for 𝜏 = 1, so 0 is of type 1). Let 𝑆𝜏 = ( 𝜏−1
𝐵

, 𝜏
𝐵
] be the set of competencies of type 𝜏 (except

that, in the case that 𝜏 = 1, we take 𝑆1 to be the closed interval [0, 1
𝐵
]). Let 𝜋𝜏 = 𝒟[𝑆𝜏 ] be

the probability that a voter has type 𝜏 . Since the types form a partition of [0, 1], we have

that
∑︀𝐵

𝜏=1 𝜋𝜏 = 1.

For any two types 𝜏, 𝜏 ′, we define

𝜙′(𝜏, 𝜏 ′) = sup
(𝑥,𝑦)∈𝑆𝜏×𝑆𝜏 ′

𝜙(𝑥, 𝑦).8

We abuse notation by extending 𝜙′ to operate directly on competencies in [0, 1] by first

converting competencies to types and then applying 𝜙′. Then, 𝜙′ has the property that for

any 𝑝𝑖, 𝑝𝑗 ∈ [0, 1],

𝜙(𝑝𝑖, 𝑝𝑗) ≤ 𝜙′(𝑝𝑖, 𝑝𝑗) ≤ (1 + 𝜀)𝜙(𝑝𝑖, 𝑝𝑗).

We have that for all 𝜏 , if 𝑥 ∈ 𝑆𝜏 , then

𝐵∑︁
𝜏 ′=1

𝜙′(𝜏, 𝜏 ′)𝜋𝜏 ′ = E𝒟[𝜙
′(𝑥, ·)] ≤ (1 + 𝜀) · E𝒟[𝜙(𝑥, ·)] = (1 + 𝜀).

8Note that, because 𝜙 is increasing in its second coordinate, one can actually write 𝜙(𝜏, 𝜏 ′) =

sup𝑥∈𝑆𝜏
𝜙(𝑥, 𝜏 ′

𝐵 ).
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Hence, we define

𝜙(𝜏, 𝜏 ′) = 𝜙′(𝜏, 𝜏 ′) · (1 + 𝜀)∑︀𝐵
𝜏 ′′=1 𝜙

′(𝜏, 𝜏 ′′)𝜋𝜏 ′′
.

We again abuse notation to allow 𝜙 to operate directly on competencies. We have that

𝜙(𝑥, 𝑦) ≥ 𝜙′(𝑥, 𝑦) ≥ 𝜙(𝑥, 𝑦) for all competencies 𝑥, 𝑦 ∈ [0, 1] and further, for all 𝜏 ,
∑︀𝐵

𝜏 ′=1 𝜙(𝜏, 𝜏
′)𝜋𝜏 ′ =

1 + 𝜀.

The Poisson branching process we will eventually compare to is one with 𝐵 types param-

eterized by the expected-children matrix 𝑀 , where

𝑀𝜏𝜏 ′ = 𝑝
(1 + 𝜀)2

1− 2𝜀
𝜙(𝜏, 𝜏 ′).

First, we show that 𝑀 has largest eigenvalue strictly less than 1 (for our choice of 𝜀), so that

the branching process will be subcritical. Indeed, 𝑀 has only positive entries, so we need

only exhibit an eigenvector with all nonnegative entries such that the associated eigenvalue is

strictly less than 1. The Perron-Frobenius theorem tells us this eigenvalue must be maximal.

Next, we give details for proving the Poisson process is subcritical, as well as completing

the comparison of between the original delegation process and this one. The comparison

makes use of the concentration of the number of voters in each bucket.

The eigenvector we consider is 𝜋⃗ = (𝜋1, . . . , 𝜋𝐵) (which has nonnegative entries, as each

𝜋𝜏 is a probability). We show it has eigenvalue 𝑝 (1+𝜀)3

1−2𝜀
, strictly less than 1 due to our choice

of 𝜀. We show it has eigenvalue 𝑝 (1+𝜀)3

1−2𝜀
, strictly less than 1 due to our choice of 𝜀. Indeed,

we have that

(𝑀𝜋⃗)𝜏 =
𝐵∑︁

𝜏 ′=1

𝜋𝜏𝜙(𝜏, 𝜏
′)𝜋𝜏 ′ = 𝜋𝜏𝑝

(1 + 𝜀)3

1− 2𝜀

by the definition of 𝜙. Hence, 𝜋⃗ is our desired eigenvector.

Since X𝑃
𝑀,𝜏 is sub-critical for all 𝜏 , we have that there is some 𝑐 such that for all 𝜏 ∈ [𝐵],

P[X𝑃
𝑀,𝜏 ≤ 𝑐 log(𝑛)] = 1− 𝑜(1/𝑛). We take 𝐶(𝑛) = 𝑐 log(𝑛).
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Now we consider our branching process, X𝐷
𝑝,𝑖. To make the comparison, we will need some

minimal concentration properties. We first show that the sampled competencies 𝑝 satisfy

these properties with high probability, and then show that, conditioned on these properties,

the branching process X𝐷
𝑝,𝑖 is easily comparable to a Poisson process. The properties are the

following:

1. For each voter 𝑖 ∈ [𝑛],
∑︀

𝑗 ̸=𝑖 𝜙(𝑝𝑖, 𝑝𝑗) ≥ (1− 𝜀) · 𝑛.

2. For each type 𝜏 ∈ [𝐵], the number of voters of type 𝜏 , |{𝑖 | 𝑝𝑖 ∈ 𝑆𝜏}| ≤ (1 + 𝜀)𝜋𝜏𝑛.

For the first property, fix the competence 𝑝𝑖 of a single voter 𝑖. Then when sampling the

𝑝𝑗s,
∑︀

𝑗 ̸=𝑖 𝜙(𝑝𝑖, 𝑝𝑗) is the sum 𝑛−1 independent variables, all in the interval [𝐿,𝑈 ], with mean

1. Hence, by Hoeffding’s inequality, for all competencies 𝑐, 𝒟𝑛[
∑︀

𝑗 ̸=𝑖 𝜙(𝑝𝑖, 𝑝𝑗) ≥ (1−𝜀)𝑛 | 𝑝𝑖 =

𝑐] = 1− 𝑜(1/𝑛), where the 𝑜(1/𝑛) term is independent of 𝑐. By the law of total probability,

this implies that even when 𝑝𝑖 is sampled as well, the 1 − 𝑜(1/𝑛) bound continues to hold.

By a union bound over all 𝑛 voters, this holds for everybody with probability 1− 𝑜(1).

For the second property, note that the number of voters of type 𝜏 follows a Bin(𝑛, 𝜋𝜏 ) dis-

tribution. A simple application of Hoeffding’s inequality implies that for this 𝜏 , |{𝑖 | 𝑝𝑖 ∈ 𝑆𝜏}| ≤

(1 + 𝜀)𝜋𝜏𝑛 (note that this holds even in the extreme cases where 𝜋𝜏 = 0 or 𝜋𝜏 = 1). As the

number 𝐵 of types is fixed and independent of 𝑛, a union bound over all 𝐵 types implies

this holds for all 𝜏 with probability 1− 𝑜(1).

Now fix some voter competencies 𝑝 such that both properties hold. We will first upper

bound the probability a voter of type 𝜏 delegates to a voter of type 𝜏 ′. Hence, we can compare

our branching process to one with these larger probabilities, and this will only dominate our

original process.

To that end, since |𝐷𝑡−1| = 𝑡− 1 ≤ 𝑡 (recall that 𝐷𝑡−1 consists of the dead voters at time
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𝑡− 1), using the first property, we have that for all 𝑖 ∈ [𝑛],

∑︁
𝑗∈[𝑛]∖(𝐷𝑡−1∪{𝑖})

𝜙(𝑝𝑖, 𝑝𝑗) ≥ (1− 𝜀)𝑛− 𝑈 · 𝑡.

Hence, as long as 𝑡 ≤ 𝜀𝑛/𝑈 ,
∑︀

𝑗∈[𝑛]∖(𝐷𝑡−1∪{𝑖}) 𝜙(𝑝𝑖, 𝑝𝑗) ≥ (1− 2𝜀)𝑛.

Including the fact that 𝜙(𝑝𝑖, 𝑝𝑗) ≤ 𝜙(𝑝𝑖, 𝑝𝑗) for all 𝑝𝑖 and 𝑝𝑗, we have that for all time

steps 𝑡 ≤ 𝜀𝑛/𝑈,

𝑝 · 𝜙(𝑝𝑖, 𝑝𝑗)∑︀
𝑘′∈[𝑛]∖(𝐷𝑡−1∪{𝑘}) 𝜙(𝑝𝑖, 𝑝𝑘′)

≤ 𝑝

𝑛
· 𝜙(𝑝𝑖, 𝑝𝑗)
(1− 2𝜀)

.

Note that for sufficiently large 𝑛, 𝐶(𝑛) ≤ 𝜀𝑛/𝑈 , so from now on we restrict ourselves to such

𝑛.

Further, note that by the second property, there will never be more than (1 + 𝜀)𝜋𝜏𝑛

neutral voters of type 𝜏 . Hence, if we take a voter of type 𝜏 ′ at time step 𝑡 ≤ 𝐶(𝑛), the

number of children it will have of type 𝜏 will be stochastically dominated by a Bin((1 +

𝜀)𝜋𝜏𝑛,
𝑝
𝑛
· 𝜙(𝑝𝑖,𝑝𝑗)

(1−2𝜀)
), and this is independent for each 𝜏 . As 𝑛 grows large, this distribution

approaches a Pois(𝑝 (1+𝜀)
1−2𝜀

𝜙(𝜏, 𝜏 ′)). In particular, this means that for sufficiently large 𝑛, it

will be stochastically dominated by a Pois(𝑝 (1+𝜀)2

1−2𝜀
𝜙(𝜏, 𝜏 ′)) distribution (note the extra (1+𝜀)

factor). Hence, if voter 𝑖 is of type 𝜏 , up to time 𝑡 ≤ 𝐶(𝑛), X𝐷
𝑝,𝑖 is dominated by X𝑃

𝑀,𝜏 , so

P𝒟,𝑀𝑆
𝑝,𝜙.𝑛

[X𝐷
𝑝,𝑖 ≥ 𝐶(𝑛)] ≥ P𝒟,𝑀𝑆

𝑝,𝜙.𝑛
[X𝑃

𝑀,𝜏 ≥ 𝐶(𝑛)] = 1− 𝑜(1/𝑛).

A union bound over all 𝑛 voters tells us this is true for all voters simultaneously with

probability 1− 𝑜(1), as needed.

Next, we turn to the proofs of (3.2) and (3.3) that follow a similar structure to Confidence-

based, however, they are quite a bit more intricate due to the inter dependencies between

competence level and delegation probability.

The Continuous General Delegation Model satisfies (3.2).
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To show (3.2) holds, we first show the following.

Let 𝜇𝒟 be the mean of the competence distribution 𝒟. For a fixed 𝑥, let 𝜙+
𝑥 (𝑦) be the

function 𝜙(𝑥, 𝑦) · 𝑦. We show that there is some 𝑐 > 0 such that for all 𝑥 ∈ [0, 1],

E𝒟[𝜙
+
𝑥 ] ≥ 𝜇𝒟 + 𝑐. (3.18)

Indeed, if we view E𝒟[𝜙
+
𝑥 ] as a function of 𝑥 for 𝑥 ∈ [0, 1], first note that it is a continuous

function on a compact set, and hence it attains its minimum. Further, for all 𝑥 ∈ [0, 1], since

𝜙(𝑥, 𝑦) and 𝑦 are both increasing functions of 𝑦, by the FKG inequality [88],

E𝒟[𝜙
+] > E𝒟[𝜙(𝑥, ·)] · 𝜇𝒟 = 𝜇𝐷,

since, by assumption, E𝒟[𝜙(𝑥, ·)] = 1. Hence, this attained minimum must be strictly larger

than 𝜇, implying (3.18).

Since 𝜙(𝑥, 𝑦) is normalized so that E𝑦∼𝒟[𝜙(𝑥, 𝑦)] = 1, E𝑦∼𝒟[𝜙(𝑥, 𝑦) · 𝑦] is the expected

competence of the voter to whom someone of competence 𝑥 delegates to (prior to other

competencies being drawn). Hence, (3.18) tells us that “on average”, all voters (regardless

of competence) tend to delegate to those with competence strictly above the mean. Ideally,

we would choose 𝛼 ≈ 𝑐/2 and hope that some concentration result tells us that the weighted

competencies post-delegation will be strictly above 𝜇 + 𝑐/2 (the mean of all competencies

will be close to 𝜇 by standard concentration results). However, proving this concentration

result is surprisingly subtle, as there are many dependencies between different voter delega-

tions. Indeed, if one voter with high competence and many delegations chooses to delegate

“downwards” (that is, to someone with very low competence), this can cancel out all of the

“expected” progress we had made thus far. Hence, the rest of this proof involves proving

concentration does in fact hold. We prove this by breaking up the process of sampling in-
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stances into much more manageable pieces, where, in each, as long as nothing goes “too”

wrong, concentration will hold.

In particular, we will prove that for all 𝛾 > 0, with high probability,

𝑛∑︁
𝑖=1

weight𝑖(𝐺) · 𝑝𝑖 −
𝑛∑︁

𝑖=1

𝑝𝑖 ≥ (𝑐(1− 𝑝)− 𝛾)𝑛. (3.19)

Fix such a 𝛾. As in the previous part, fix 𝜀 > 0 which will paramaterize our steps. We will

later choose 𝜀 sufficiently small to get our desired result (precisely 𝜀 such that 6𝜀+ 𝜀2 < 𝛾).

By choosing 𝛾 < 𝑐(1− 𝑝), this value is positive, so we can choose 𝛼 = 𝑐(1−𝑝)−𝛾
2

which proves

Equation (3.2)

To that end, we define a sequence of six sampling steps that together are equivalent to

the standard sampling process with respect to 𝒟 and 𝑀𝑆
𝑝,𝜙. In each step, we will show that

with high probability, nothing “goes wrong”, and conditioned on nothing going wrong in all

these steps, we will get the 𝛼 improvement that we desire. The six steps are as follows:

1. Sample a set 𝑀 ⊆ [𝑛] of voters that choose not to delegate. Each voter is included

independently with probability 𝑝.

2. Sample competencies 𝑝𝑖 for 𝑖 ∈ [𝑛] ∖𝑀 . Each 𝑝𝑖 is sampled i.i.d. from 𝒟.

3. Sample competencies 𝑝𝑗 for 𝑗 ∈ 𝑀 . Each 𝑝𝑗 is sampled i.i.d. from 𝒟.

4. Sample a set 𝑅 ⊆ [𝑛] ∖ 𝑀 of delegators that delegate to those in 𝑀 . Each voter

𝑖 ∈ [𝑛] ∖𝑀 is included independently with probability
∑︀

𝑗∈𝑀 𝜙(𝑝𝑖,𝑝𝑗)∑︀
𝑗∈[𝑛]∖{𝑖}𝜙(𝑝𝑖,𝑝𝑗)

, that is, the total

𝜙 weight they put on voters in 𝑀 divided by the total 𝜙 weight they put on all voters.

5. Sample delegations of voters in [𝑛] ∖ (𝑀 ∪ 𝑅). At this point, we are conditioning on

such voters delegating, and when they do delegate, they do so to voters in [𝑛] ∖ 𝑀 .

Hence, for each 𝑖 ∈ [𝑛] ∖ (𝑀 ∪𝑅), they delegate to 𝑗 ∈ [𝑛] ∖ (𝑀 ∪ {𝑖}) with probability

130



𝜙(𝑝𝑖,𝑝𝑗)∑︀
𝑗′∈[𝑛]∖(𝑀∪{𝑖}) 𝜙(𝑝𝑖,𝑝𝑗′ )

.

6. Sample delegations of voters in 𝑅. At this point, we are conditioning on such voters

delegating to those in 𝑀 . Hence, for each 𝑖 ∈ 𝑅, they choose to delegate to 𝑗 ∈ 𝑀

with probability 𝜙(𝑝𝑖,𝑝𝑗)∑︀
𝑗′∈𝑀 𝜙(𝑝𝑖,𝑝𝑗′ )

.

We now analyze each step, describing what could “go wrong”. Let ℰ1, . . . , ℰ6 be the events

that nothing goes wrong in each of the corresponding steps. We define these events formally

below. Our goal is to show that P𝒟,𝑀𝑆
𝑝,𝜙,𝑛

[ℰ1 ∩ · · · ∩ ℰ6] = 1− 𝑜(1).

∙ Let ℰ1 be the event that (𝑝 − 𝜀) · 𝑛 ≤ |𝑀 | ≤ (𝑝 + 𝜀) · 𝑛. Note that 𝑀 is the sum of 𝑛

independent Bernouilli random variables with success probability 𝑝. It follows directly from

a union bound over both variants of Hoeffding’s inequality that

P𝒟,𝑀𝑆
𝑝,𝜙,𝑛

[(𝑝− 𝜀) · 𝑛 ≤ |𝑀 | ≤ (𝑝+ 𝜀) · 𝑛] = 1− 𝑜(1).

∙ Let ℰ2 be the event that
∑︀

𝑖∈[𝑛]∖𝑀 𝑝𝑖 ≤ 𝑛(𝜇 + 𝜀)(1 − 𝑝 + 𝜀). Note that
∑︀

𝑖∈[𝑛]∖𝑀 𝑝𝑖 is

the sum of 𝑛 − |𝑀 | i.i.d. random variables with mean 𝜇. Conditioning on event ℰ1, |𝑀 | is

lower bounded by 𝑛(𝑝 − 𝜀), implying that 𝑛 − |𝑀 | ≤ 𝑛(1 − 𝑝 + 𝜀) as well. It follows from

Lemma 14 that

P𝒟,𝑀𝑆
𝑝,𝜙,𝑛

⎡⎣ ∑︁
𝑖∈[𝑛]∖𝑀

𝑝𝑖 ≤ 𝑛(𝜇+ 𝜀)(1− 𝑝+ 𝜀)

⃒⃒⃒⃒
⃒⃒ ℰ1

⎤⎦ = 1− 𝑜(1)

which, combined with P𝒟,𝑀𝑆
𝑝,𝜙,𝑛

[ℰ1] = 1 − 𝑜(1), proves that ℰ1 ∩ ℰ2 occurs with probability

1− 𝑜(1).

∙ Let ℰ3 be the event consisting of all instances (𝑝,𝐺) such that

∑︀
𝑗∈𝑀 𝜙(𝑝𝑖, 𝑝𝑗) · 𝑝𝑗∑︀

𝑗∈𝑀 𝜙(𝑝𝑖, 𝑝𝑗)
≥ (1− 𝜀)

(1 + 𝜀)
(𝜇+ 𝑐)
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for all 𝑖 ∈ [𝑛] ∖𝑀 .

We show ℰ3 occurs with high probability conditional on ℰ1 and ℰ1 (conditioning on ℰ2

is unnecessary. but makes the final statement easier). Fix a set of voters 𝑀 and 𝑝𝑖 for

𝑖 ∈ [𝑛] ∖ 𝑀 satisfying ℰ1 and ℰ2. For each 𝑖 ∈ [𝑛] ∖ 𝑀 , we will show that with probability

1− 𝑜(1/𝑛), when we sample the 𝑝𝑗s for 𝑗 ∈ 𝑀 , they satisfy

∑︁
𝑗∈𝑀

𝜙(𝑝𝑖, 𝑝𝑗) ≤ |𝑀 |(1 + 𝜀) (3.20)

and ∑︁
𝑗∈𝑀

𝜙(𝑝𝑖, 𝑝𝑗) · 𝑝𝑗 ≥ |𝑀 |(1− 𝜀)(𝜇+ 𝑐). (3.21)

(3.20) follows from the fact that
∑︀

𝑗∈𝑀 𝜙(𝑝𝑖, 𝑝𝑗) is the sum of |𝑀 | bounded independent

random variables

with mean E𝑦∼𝒟[𝜙(𝑝𝑖, 𝑦)] = 1. By Hoeffding’s inequlaity, since |𝑀 | is linear in 𝑛,
∑︀

𝑗∈𝑀 𝜙(𝑝𝑖, 𝑝𝑗)

is at most |𝑀 |(1 + 𝜀) with probability 1− 𝑜(1/𝑛).

(3.21) follows from the fact that
∑︀

𝑗∈𝑀 𝜙(𝑝𝑖, 𝑝𝑗) · 𝑝𝑗 is also the sum of |𝑀 | bounded inde-

pendent random variables with mean E𝒟[𝜙
+
𝑝𝑖
]. Again, since we have conditioned on ℰ1, |𝑀 |

is lower bounded by (𝑝− 𝜀)𝑛, which by Hoeffding’s inequality implies that
∑︀

𝑗∈𝑀 𝜙(𝑝𝑖, 𝑝𝑗)𝑝𝑗

is at least |𝑀 |(1− 𝜀)E𝒟[𝜙𝑝𝑖 ] with probability 1− 𝑜(1/𝑛).

Finally, we can conclude via a union bound that
∑︀

𝑗∈𝑀 𝜙(𝑝𝑖,𝑝𝑗)·𝑝𝑗∑︀
𝑗∈𝑀 𝜙(𝑝𝑖,𝑝𝑗)

≥ (1−𝜀)
(1+𝜀)

(𝜇 + 𝑐) with

probability 1− 𝑜(1/𝑛) for any 𝑖 ∈ [𝑛] ∖𝑀 . Hence, by another union bound over the at most

𝑛 voters 𝑖 ∈ [𝑛] ∖𝑀 ,
∑︀

𝑗∈𝑀 𝜙(𝑝𝑖,𝑝𝑗)·𝑝𝑗∑︀
𝑗∈𝑀 𝜙(𝑝𝑖,𝑝𝑗)

≥ (1−𝜀)
(1+𝜀)

(𝜇+ 𝑐) for all 𝑖 ∈ [𝑛] ∖𝑀 with high probability.

By the law of total probability, ℰ3 conditioned on ℰ1 and ℰ2 occurs with probability

1− 𝑜(1), which proves that ℰ1 ∩ ℰ2 ∩ ℰ3 occurs with probability 1− 𝑜(1) by the chain rule.

∙ Let ℰ4 be the entire sample space. Nothing can “go wrong” during this sampling step.

So trivially, ℰ1 ∩ ℰ2 ∩ ℰ3 ∩ ℰ4 occurs with probability 1− 𝑜(1).
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∙ Let ℰ5 be the event that dels𝑖(𝐺) ≤ 𝐶(𝑛) for all 𝑖 ∈ [𝑛] ∖ 𝑀 and total-weight(𝐺) ≥

𝑛 − 𝐶(𝑛)2 log(𝑛) in the subgraph 𝐺 sampled (i.e., with delegations only from voters not

in 𝑅 or 𝑀). We will show ℰ5 occurs with high probability even when we sample a full

delegation graph (that is, samples delegations for all voters), which implies it continues to

hold even when we sample only some delegations (recall that at this step we have only

sampled delegations from voters in [𝑛] ∖ (𝑀 ∪𝑅)).

The proof of this is very similar to the one in Theorem 6, with one extra step to allow

for different 𝜙 weights.

It was proved in the previous part of this proof that, for all voters 𝑖, we have that

dels𝑖(𝐺) ≤ 𝐶(𝑛) with probability 1 − 𝑜(1) (not conditioned on anything) when we sam-

ple entire delegation graphs, so we can safely condition on this fact. We now prove that

P𝒟,𝑀𝑆
𝑝,𝜙,𝑛

[total-weight(𝐺𝑛) ≥ 𝑛−𝑂(log3 𝑛) | dels𝑖(𝐺) ≤ 𝐶(𝑛)] = 1− 𝑜(1).

We begin by bounding the number of voters that end up in cycles. Fix some voter 𝑖, and

let us begin by sampling their delegation tree.

Since we are conditioning on the tree having size at most 𝐶(𝑛), the most weight that

voter 𝑖 can place on all of the voters in 𝑖’s delegation tree is 𝑈 ·𝐶(𝑛). The minimum weight

that 𝑖 can place on all voters is 𝐿(𝑛− 1). Hence, the probability that 𝑖 delegates to someone

in 𝑖’s tree conditional the delegation tree having size at most 𝐶(𝑛) is at most 𝑝 · 𝑈 ·𝐶(𝑛)
𝐿·(𝑛−1)

.

Since 𝑖 was arbitrary, this implies that the expected number of voters in cycles can be at

most 𝑛 · 𝑝 · 𝑈 ·𝐶(𝑛)
𝐿·(𝑛−1)

∈ 𝑂(log 𝑛).

Applying Markov’s inequality just as in the analogous proof in the previous section, the

probability that more than log2 𝑛 voters are in cycles is at most 𝑛𝑝 𝑈𝐶(𝑛)

𝐿(𝑛−1) log2 𝑛
= 𝑂(1/ log 𝑛) =

𝑜(1). Further, the total number of people that could delegate to voters in cycles is at most

𝐶(𝑛) times the number of voters in cycles. Hence, with probability 1 − 𝑜(1), there are at

most 𝐶(𝑛) · log2 𝑛 voters delegating to those in cycles. This implies the desired bound.

Hence, we have proved that P𝒟,𝑀𝑆
𝑝,𝜙,𝑛

[ℰ5] = 1 − 𝑜(1). Since we have already shown that
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P𝒟,𝑀𝑆
𝑝,𝜙,𝑛

[ℰ1∩ℰ2∩ℰ3∩ℰ4] = 1− 𝑜(1), a union bound implies that ℰ1∩ℰ2∩ℰ3∩ℰ4∩ℰ5 occurs

with probability 1− 𝑜(1) as well.

∙ We now consider the sixth step. To define ℰ6, we need some new notation. Fix

competencies 𝑝 and a partial delegation graph 𝐺 such that (𝑝,𝐺) is in the first five events.

We define 𝑄𝑖 for 𝑖 ∈ 𝑅 to be the random variable representing the competence of the voter

to whom 𝑖 delegates. Since we know 𝑖 delegates to a voter in 𝑀 , note that

𝑄𝑖(𝐺) = 𝑝𝑗 with probability
𝜙(𝑝𝑖, 𝑝𝑗)∑︀

𝑗′∈𝑀 𝜙(𝑝𝑖, 𝑝𝑗′)
for all 𝑗 ∈ 𝑀.

Let ℰ6 be the event consisting of all instance (𝑝,𝐺) such that that
∑︀

𝑖∈𝑅 dels𝑖(𝐺)·𝑄𝑖(𝐺) ≥
(1−𝜀)2

1+𝜀
(𝜇 + 𝑐)(1 − 𝑝 − 2𝜀) · 𝑛. We show that P𝒟,𝑀𝑆

𝑝,𝜙,𝑛
[ℰ6 | ℰ1 ∩ · · · ∩ ℰ5] = 1 − 𝑜(1). This,

combined with the the fact P𝒟,𝑀𝑆
𝑝,𝜙,𝑛

[ℰ1 ∩ · · · ∩ ℰ5] = 1 − 𝑜(1) (shown earlier), implies that

P𝒟,𝑀𝑆
𝑝,𝜙,𝑛

[ℰ1 ∩ · · · ∩ ℰ6] = 1− 𝑜(1). It follows from the definition of 𝑄𝑖 that

E[𝑄𝑖] =
∑︁
𝑗∈𝑀

𝜙(𝑝𝑖, 𝑝𝑗)∑︀
𝑗′∈𝑀 𝜙(𝑝𝑖, 𝑝𝑗′)

· 𝑝𝑗 =
∑︀

𝑗∈𝑀 𝜙(𝑝𝑖, 𝑝𝑗) · 𝑝𝑗∑︀
𝑗∈𝑀 𝜙(𝑝𝑖, 𝑝𝑗)

.

By conditioning on ℰ3, we have that E[𝑄𝑖] ≥ (1−𝜀)
(1+𝜀)

(𝜇 + 𝑐) for each 𝑖 ∈ 𝑅. Hence,

E[
∑︀

𝑖∈𝑅 dels𝑖(𝐺) ·𝑄𝑖] ≥ (𝑛− |𝑀 | −𝐶(𝑛)2 log(𝑛)) · 1+𝜀
1−𝜀

· (𝜇+ 𝑐), since we are conditioning on

ℰ3 and ℰ5. Further, for sufficiently large 𝑛, 𝐶(𝑛)2 log(𝑛) ≤ 𝜀𝑛; since we are conditioning on

ℰ1, |𝑀 | ≤ (𝑝+ 𝜀)𝑛, so we have that for sufficiently large 𝑛,

E[
∑︁
𝑖∈𝑅

dels𝑖(𝐺) ·𝑄𝑖] ≥ (1− 𝑝− 2𝜀) · 1 + 𝜀

1− 𝜀
· (𝜇+ 𝑐) · 𝑛 ∈ Ω(𝑛).

Next, consider Var[
∑︀

𝑖∈𝑅 dels𝑖(𝐺) · 𝑄𝑖]. Since each 𝑄𝑖 takes on values in [0, 1], Var[𝑄𝑖] ≤ 1.

Further, each summand is independent, as each 𝑄𝑖 is independent and we have fixed 𝐺, so we

can can view dels𝑖(𝐺) as a constant. Hence, Var[
∑︀

𝑖∈𝑅 dels𝑖(𝐺) ·𝑄𝑖] ≤
∑︀

𝑖∈𝑅 dels𝑖(𝐺)2 ∈ 𝑜(𝑛2)

134



since, for all 𝑖, dels𝑖(𝐺) ≤ 𝐶(𝑛) ∈ 𝑂(log 𝑛) and
∑︀

𝑖 dels𝑖(𝐺) ≤ 𝑛. Hence,

P𝒟,𝑀𝑆
𝑝,𝜙,𝑛

[
∑︁
𝑖∈𝑅

dels𝑖(𝐺) ·𝑄𝑖 <
(1− 𝜀)2

1 + 𝜀
(𝜇+ 𝑐)(1− 𝑝− 2𝜀) · 𝑛]

≤ P𝒟,𝑀𝑆
𝑝,𝜙,𝑛

[
∑︁
𝑖∈𝑅

dels𝑖(𝐺) ·𝑄𝑖 < (1− 𝜀)E[
∑︁
𝑖∈𝑅

dels𝑖(𝐺) ·𝑄𝑖]]

≤
Var[

∑︀
𝑖∈𝑅 dels𝑖(𝐺) ·𝑄𝑖]

𝜀2 · E[
∑︀

𝑖∈𝑅 dels𝑖(𝐺) ·𝑄𝑖]2
∈ 𝑜(1)

where the second inequality is due to Chebyshev’s inequality, which is 𝑜(1) because the

numerator is 𝑜(𝑛2) and the denominator is Ω(𝑛2). This implies the desired result.

Finally, we show that for all instance (𝑝,𝐺) ∈ ℰ1 ∩ · · · ∩ ℰ6, (3.2) holds, and hence so

does (3.19). We have that
∑︀𝑛

𝑖=1𝑤𝑖(𝐺) · 𝑝𝑖 =
∑︀

𝑖∈𝑅 dels𝑖(𝐺) · 𝑄𝑖(𝐺) +
∑︀

𝑗∈𝑀 𝑝𝑗, because in

𝐺 each voter 𝑖 ∈ 𝑅 delegates all of their dels𝑖(𝐺) votes to the voter in 𝑀 with competence

𝑄𝑖(𝐺). Hence,
∑︀𝑛

𝑖=1𝑤𝑖(𝐺) · 𝑝𝑖 −
∑︀𝑛

𝑖=1 𝑝𝑖 =
∑︀

𝑖∈𝑅 dels𝑖(𝐺) · 𝑄𝑖(𝐺) −
∑︀

𝑖∈[𝑛]∖(𝑀∪𝑅) 𝑝𝑖. Since

(𝑝,𝐺) ∈ ℰ2, we have that
∑︀

𝑖∈[𝑛]∖𝑀 𝑝𝑖 ≤ 𝑛(𝜇+ 𝜀)(1− 𝑝+ 𝜀). Since (𝑝,𝐺) ∈ ℰ6, we have that∑︀
𝑖∈𝑅 dels𝑖(𝐺) ·𝑄𝑖(𝐺) ≥ (1−𝜀)2

1+𝜀
(𝜇+ 𝑐)(1− 𝑝− 2𝜀) · 𝑛. Hence, this difference is at least

((𝜇+ 𝑐)(1− 𝑝− 2𝜀)− (𝜇+ 𝜀)(1− 𝑝+ 𝜀))𝑛 ≥ (𝑐(1− 𝑝)− 3𝜀𝜇− 2𝜀𝑐− (1− 𝑝)𝜀− 𝜀2)𝑛

≥ (𝑐(1− 𝑝)− 6𝜀− 𝜀2)𝑛

where the second inequality holds because, 𝑐, (1 − 𝑝), 𝜇 ≤ 1. By choosing 𝜀 such that

6𝜀+ 𝜀2 ≤ 𝛾 (𝜀 = min(𝛾/7, 1) will do), (3.19) follows.

The Continuous General Delegation Model Satisfies (3.3)

We now show that there exists a distribution 𝒟 and 𝛼 > 0 such that
∑︀𝑛

𝑖=1 𝑝𝑖 + 𝛼𝑛 ≤

𝑛/2 ≤
∑︀𝑛

𝑖=1 weight𝑖(𝐺𝑛) · 𝑝𝑖 − 𝛼𝑛 with probability 1 − 𝑜(1). This implies that the model

𝑀𝑆
𝑝,𝜙, 𝑛 satisfies probabilistic positive gain by Lemma 13.
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As in earlier arguments, let 𝒟𝜂 = 𝒰 [0, 1− 2𝜂] for 𝜂 ∈ [0, 1/2). Note that

𝑓(𝜂) = inf
𝑥∈[0,1]

{︀
E𝐷𝜂 [𝜙

+
𝑥 ]
}︀
· (1− 𝑝)− 3𝜂/2

is a continuous function of 𝜂.

Moreover, 𝑓(0) > 0. Hence, for sufficiently small 𝜂 > 0, 𝑓(𝜂) > 0.

Consider 𝒟𝜂 for some 𝜂 > 0 such that 𝑓(𝜂) > 0. Let 𝛼 = min(𝜂/2, 𝑓(𝜂)/2). Since

𝜇𝒟𝜂 = 1/2 − 𝜂, by Hoeffding’s inequality,
∑︀𝑛

𝑖=1 𝑝𝑖 ≤ (1/2 − 𝜂/2)𝑛 ≤ 𝑛/2 − 𝛼𝑛 with high

probability.

Next, note that we can choose 𝑐 = inf𝑥∈[0,1]
{︀
E𝐷𝜂 [𝜙

+
𝑥 ]
}︀

in order to satisfy (3.18). Hence,

by choosing 𝛾 = 𝑓(𝜂)/2, it follows from (3.19) that

𝑛∑︁
𝑖=1

weight𝑖(𝐺) · 𝑝𝑖 −
𝑛∑︁

𝑖=1

𝑝𝑖 ≥ (𝑐(1− 𝑝)− 𝑓(𝜂)/2)𝑛 = (3𝜂/2 + 𝑓(𝜂)/2)𝑛 ≥ (3𝜂/2 + 𝛼)𝑛

with high probability. Further, by Hoeffding’s inequality,
∑︀𝑛

𝑖=1 𝑝𝑖 ≥ (1/2−3𝜂/2)𝑛 with high

probability, so by the union bound applied to these inequalities,

𝑛∑︁
𝑖=1

weight𝑖(𝐺) · 𝑝𝑖 ≥ 𝑛/2 + 𝛼𝑛

with high probability, as needed.

3.6 Discussion

This chapter relies on a set of assumptions and modeling choices that are worth discussing.

First, a prominent feature of our model is that there is no underlying social network, that

is, there is no restriction on whom a voter may delegate to. As we explained in Section 3.1,
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we believe this is realistic. But we can, in fact, extend our results to a model where a

directed social network is first sampled, and then a (𝑞, 𝜙)-model is followed. The social

network must be sampled such that the neighbors of each voter are chosen uniformly at

random, although the number of such neighbors could follow any small-tailed distribution.

Intuitively, delegation proportional to weighting the neighbors of 𝑖 (rather than the entire

population) is equivalent to a possibly different weighting over the entire population.9

Second, building on Kahng et al. [129], we assume that there exists a true best alternative.

Needless to say, this assumption is necessary if we wish to “defend” liquid democracy against

their conclusions. But it is also an extremely well-studied assumption that dates back to

the 18th century [240]. The existence of a ground truth is easily justified in the contexts

of prediction markets or corporate governance, where alternative policies can be measured

in terms of concrete metrics like “estimated revenue in five years,” and these metrics can

be communicated to voters. That said, some decisions inherently rely on other subjective

criteria that we do not capture.

Third, again like previous papers [18, 42, 129], we assume that voters vote independently.

Admittedly, this is not a realistic assumption; relaxing it, as it was relaxed for the classic

Condorcet Jury Theorem [110, 181], is a natural direction for future work.

Fourth, our models do not take strategic behaviors into account. It would be interesting

to bridge our work and those capturing game-theoretic issues in liquid democracy [25, 243].

More generally, our work aims to provide a better understanding of a prominent short-

coming of liquid democracy: concentration of power. But there are others. For example,

any voter can see the complete delegation graph under current liquid democracy systems—

a feature that helps voters make informed delegation decisions (because one’s vote can be

transitively delegated). This may lead to voter coercion, however, and the tradeoff between
9This extension does not carry over to undirected networks, since if voters have a small number of neigh-

bors, we would expect many 2-cycles to form after delegation, which, under the worst-case cycle approach,
may not be canceled out by the overall increase in competence.
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transparency and security is poorly understood. Nevertheless, there are many reasons to be

excited about the potential of liquid democracy [26]. We believe that our results provide

another such reason and hope that our techniques will be useful in continuing to build the

theoretical and empirical understanding of this compelling paradigm.
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Chapter 4

An Empirical Analysis of Liquid

Democracy’s Epistemic Performance

Abstract

Liquid democracy promises to enhance collective decisions through a process deemed both

legitimate (delegates are chosen endogenously by all) and accurate (experts tend to receive

more delegations). Such assertions rely on both delegations improving the group’s expertise

post-delegation and no delegate amassing too much power. To investigate liquid democracy

on binary issues for which there is a ground truth, Chapter 3 modeled delegation behavior

stochastically and identified sufficient conditions such that liquid democracy performs better

than direct democracy. Herein, we investigate whether these conditions are met empirically.

Through six experiments with a total of 𝑁 = 168 participants (and a pre-study involving

𝑁 = 101 participants), we test the performance of liquid democracy by asking participants

to either vote or delegate on tasks (group of questions from a unique theme). Regardless

of their delegation choices, we collect participants’ answers to all questions and compare

the liquid vote with its counterfactual, the direct vote. We observe that higher-expertise
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participants are statistically less likely to delegate than lower-expertise ones. Further, the

average expertise of participants who delegate is lower than the expertise of those receiving

delegations. These findings are aligned with Chapter 3’s requirement and empirically suggest

that delegation behaviors meet the conditions for positive theoretical guarantees.

4.1 Introduction

Liquid democracy is a voting paradigm that allows participants to either cast a vote directly

or nominate a delegate to decide on their behalf. Delegations are transitive so that if A

delegates to B, B delegates to C, and C votes herself, C effectively casts a vote on behalf

of all three. The final decision is made through a weighted majority where a participant’s

weight equals the number of delegations she received; this is illustrated in Section 4.1.

Liquid democracy has been said to combine the best aspects of direct voting (where all

participants cast a vote) and representative democracy (where participants elect representa-

tives to vote on their behalf) [26]. Moreover, it is currently being proposed as an alternative

to existing voting practices to elect per-issue bodies of experts (or congress-members) [229].

Evaluating such proposals is beyond the scope of this chapter; instead, we investigate the

empirical performance of liquid democracy on closed questions, i.e., those with a correct an-

swer. While such results cannot alone be used to advocate for or against liquid democracy,

they would test a key assumption at the heart of this voting paradigm: local delegations will

find experts in the electorate and lead to better decisions. We will focus on the epistemic

setting, where participants decide on a binary issue for which there is a ground truth, and

evaluate the epistemic dimension of decision-making investigating the performance of various

rules in identifying the correct answer to given problems.1

1We will solely focus in this chapter on issues that have a unique correct answer. In Section 4.5, we will
discuss the extent to which such insights extend beyond this to decisions that are not only fact-based but
moral-based.
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Figure 4.1: Liquid vote between propositions 0 and 1.
The figure represents the output of a liquid vote on two propositions (0 and 1) among 𝑁 = 7
participants. The participants are connected through an underlying social structure illustrated by
the blue lines. The dotted black arrows represent delegations: participant A delegates to partic-
ipant B. The participants who delegate (participants 𝐴,𝐵,𝐶, and 𝐺) are called delegators. The
participants who vote directly, that is, do not delegate and take part in the final vote (participants
𝐷,𝐸, and 𝐹 , circled in pink) are called delegates. In liquid democracy, votes are counted through
a weighted majority where each participant 𝑖 ∈ [𝑁 ] has weight 𝑤𝑖 depending on their delegation
behavior. Each delegate’s weight equals the number of individuals they represent either directly or
transitively (here 𝑤𝐷 = 4, 𝑤𝐸 = 1 and 𝑤𝐹 = 2). Indeed, delegate 𝐷 represents herself along with
participants 𝐺,𝐵 and 𝐴. Delegate 𝐸, on the other hand, solely represents herself. The weight of
the delegators in the final decision is equal to zero. Finally, the pink boxes display the policy for
which each delegate votes. The decision is made among the delegates, each of their vote weighted
by the number of delegations they received. Proposition 0 hence gathers 𝑤𝐸 + 𝑤𝐹 = 3 votes and
proposition B 𝑤𝐷 = 4 votes. In summary, this liquid assembly chose proposition 1.

Researchers on the epistemic dimension of collective decision-making have documented for

over two centuries the power of collective intelligence that emerges when a group, through its

collective agency, is wiser than any of its individual members. These results have theoretical

underpinning as formalized mathematically by the Marquis de Condorcet in 1785 [64] (in

what is known as the Condorcet Jury Theorem) and have been supported by considerable

empirical evidence [94, 219], philosophical argument [144], and use in business applications,

for instance, in prediction markets [10] and crowdsourcing [67, 232].

In the simple case of 𝑁 participants facing a binary decision (think of the question

“Will Joe Biden or Donald Trump win the American presidential election in 2024?”), a priori

unknown, this phenomenon can be modeled as follows. We use the notation [𝑘] = {1, . . . , 𝑘}.
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Each participant 𝑖 ∈ [𝑁 ] has a competence or expertise level 𝑝𝑖 ∈ [0, 1] (we will use these

terms interchangeably). This 𝑝𝑖 represents the probability the participant votes correctly.

We let 1 represent the correct answer and 0 the wrong answer, hence, their vote is a sample

𝑋𝑖 ∼ Ber(𝑝𝑖). In general, we will assume that these votes are mutually independent. Further,

we will assume that the 𝑝𝑖s are themselves drawn i.i.d. from some distribution 𝒟. Note that

the proportion of correct votes will approach E[𝒟] as 𝑁 increases (simply from the Law of

Large Numbers). Hence, if the average expertise of a group member E[𝒟] is strictly greater

than 0.5, the probability that at least half of the participants are correct converges to 1 as 𝑁

increases. In other words, for 𝑁 large enough, even when no individual citizen is perfectly

accurate, the group almost certainly converges to the correct answer.2

Of course, this result is flipped should the average expertise of a group member E[𝒟] be

strictly smaller than 0.5. Empirically, groups are also known to fall into this sub-optimal

regime, leading to the confusion of the multitude [156].3

The performance of this collective agency is therefore known to depend on the charac-

teristics of the groups. In lay terms, for binary decision making, the premise of collective

intelligence is that the average group member is better at voting than a random fair coin.

4.1.1 Contributions

Importantly, liquid democrats suggest displacing the necessary condition of collective intel-

ligence from “knowing about an issue” to “knowing who knows about this issue.” I might

not know whether proposition 0 or proposition 1 is better suited to curb climate change,

but I most likely know who knows more than me. Liquid democracy could leverage collec-
2Note that, for some distributions, this result still holds when comparing the group to the vote

parametrized by the largest expertise drawn from of a fixed distribution (not changing with 𝑁) that has
1 in its support, as the probability that a sum of Bernouillis converges grows exponentially fast while the
probability that the highest order statistics does grows as 1/𝑁 [153].

3The death of the philosopher Socrates can be taken as an example of collective confusion. Socrates was
put on trial for “corrupting the youth” by politicians unhappy with Socrates’ effort to teach students to have
a critical spirit and sentenced to death by a majority vote (56%) of 501 Athenians [190].
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tive intelligence to identify the knowledgeable agents and increase the likelihood of being

collectively correct. In other words, it could use knowledge agents have about each other to

foster quality decisions. Herein, we identify whether such a phenomenon (where participants

identify more competent others through delegation) happens in practice.

Even if liquid democracy increases the expertise of the average group member endoge-

nously through delegation, there are still ways for things to go wrong. It may potentially

lead to excessive concentration of power where, in the extreme case, a unique delegate re-

ceives all the delegations. Beyond the philosophical concerns, the Condorcet Jury Theorem

suggests that such a situation would be mathematically sub-optimal. Indeed, Kahng et al.

[129] proved that, under a certain class of delegation behaviors, it is always possible to

construct pathological network typologies such that a few agents amass too much power for

liquid democracy to outperform a majority vote. Hence, besides testing whether participants

identify more competent others, we will also comment on whether we observe concentration

of power in our studies. This chapter constitutes, to the best of our knowledge, the first

series of lab experiments on liquid democracy that can test the rules’ promises in terms of

epistemic performance.

4.1.2 Related Work

Liquid Democracy In chapter 3, the authors precisely studied this trade-off identifying

sufficient conditions on the maximum number of delegations one may receive and the average

increase in expertise post-delegation for liquid democracy to outperform direct democracy.

They further identify types of delegation behaviors that lead to liquid assemblies whose

characteristics respect the trade-off mentioned above. They model delegation as dependent

on participants’ relative expertise. Concretely, they consider a function 𝑞 : [0, 1] → [0, 1] that

maps expertise to probability of delegation so that participant 𝑖 with associated competence
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𝑝𝑖 votes with probability 𝑞(𝑝𝑖). Next, if participant 𝑖 delegates, she samples a peer 𝑗 to

delegate to with probability proportional to a value 𝜙(𝑝𝑖, 𝑝𝑗) where 𝜙 : [0, 1]2 → [0, 1] depends

on both delegator 𝑖 and potential delegate 𝑗’s expertise and outputs the probability that this

neighbor is chosen. The authors show that the following three classes of delegation behaviors

are sufficient for liquid democracy to weakly outperform direct democracy:

• Upward delegation: participants delegate with a fixed probability 𝑝 independent of

their expertise but only delegate to more competent peers. In short: for all 𝑖 ∈ [𝑛],

𝑞(𝑝𝑖) = 𝑝 and for all (𝑖, 𝑗) ∈ [𝑛]2, 𝜙(𝑝𝑖, 𝑝𝑗) = I[𝑝𝑗 > 𝑝𝑖].

• Confidence-based delegation: participants’ propensity to delegate decreases with

their expertise, and they choose someone randomly when they delegate. In short: 𝑞(𝑥)

is a decreasing function and for all (𝑖, 𝑗) ∈ [𝑛]2, 𝜙(𝑝𝑖, 𝑝𝑗) = 1.

• General Continuous Delegation: participants delegate with a fixed probability 𝑝

independent of their expertise, but they put higher weight on more competent peers.

In short: for all 𝑖 ∈ [𝑛], 𝑞(𝑝𝑖) = 𝑝 or 𝑞(𝑥) is a decreasing function and 𝜙(𝑥, 𝑦) increases

in its second coordinate.

The purpose of the present chapter is to investigate the validity of the delegation behaviors

identified in chapter 3. Specifically, we will test whether participants delegate more often

when they are less competent and when delegating, whether they tend to choose more

competent agents.

While [129], Caragiannis and Micha [42], and Becker et al. [18] presented negative results

for liquid democracy exhibiting pathological graphs with an intolerable amount of concentra-

tion of power and proving hardness results when trying to find the optimal delegation flows,

Halpern et al. identify delegation behavior assuming connected social structure such that

liquid democracy proves to be a better-performing voting system than direct democracy.
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Note that liquid democracy has further been studied through many lenses other than this

epistemic one. From a political economy perspective, Green-Armytage [105] studies whether

utility-maximizing agents would rationally delegate; Bloembergen et al. [25], Escoffier et al.

[81, 82] and Zhang and Grossi [243] analyze more sophisticated game-theoretic frames to

motivate both participants and delegates’ rationale in liquid democracy. Brill et al. [38],

Colley and Grandi [53], Colley et al. [54], Zhang and Grossi [244] study different types of

delegation formats, Kotsialou and Riley [139] consider incentive mechanisms, and Christoff

and Grossi [48] investigate logically interdependent propositions connecting liquid democracy

to a DeGroot model where participants “copy” their neighbor’s signal.

Others have proposed various practical solutions to bypass empirical hurdles associated

with liquid democracy: Brill and Talmon [37] proposed letting participants nominate multiple

delegates in case some abstain and also suggest ways to let a central planner decide who would

receive the delegation among the short-list. In a similar vein, Gölz et al. [101] let participants

nominate 𝑘 delegates and rely on a central planner to choose the delegation graph that would

minimize concentration of power.

Empirically, some have looked into different aspects of liquid democracy through exper-

iments in corporate [113] and political environments [137]. More recently, Campbell et al.

[41] ran experiments to test a game-theoretic formulation of liquid democracy. Unlike our

experiments, Campbell et al. [41] used online platforms to gather participants who did not

know each other. They were assigned a probability of being correct and asked whether

they would want to delegate to others, with experts (those with the highest probability

of being correct) being publicly known. The delegations were randomly assigned to the

pre-determined experts in one set-up, and through the random dot kinematogram task in

another set-up. The group sizes considered are 5 people with one expert, 15 people with 3

experts and 125 people with 25 experts. While this study uncovers interesting connection

between individuals’ perceived expertise and delegation behavior, it cannot investigate how
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experts are (or are not) identified endogenously through interpersonal knowledge embedded

in a social networks, since the participants do not know each other.

Finally, political philosophers have studied the normative properties of liquid democ-

racy [26, 228] and have proposed it as an alternative to the current legislative processes [145,

229]. Such research often follows [142]’s minority view that representative democracy, if

achieved through cogent selections, may be a better form of democracy than direct democ-

racy.

Wisdom of Crowds in Practice This chapter provides an empirical analysis of liquid

democracy’s performance, also relying on the empirical literature focused on collective be-

haviors and the “psychology of crowds” [147].

In his controversial 1895 book, Gustave Le Bon, with the specter of the French Revolution

in mind, defines different types of crowds and rationalizes their predictable irrationality

through the concept of “popular mind.” In his Memoirs of Extraordinary Popular Delusions

and the Madness of Crowds, Charles Mackay references instances where groups’ judgements

resulted in disastrous outcomes [154]. Yet, examples dating back to the early twentieth

century have exhibited a phenomenon called “Wisdom of Crowds” in which the quality of

groups’ judgements surpasses those of a few experts. For example, Francis Galton famously

collected 787 predictions for the weight of an ox and observed that the “median of the

guesses—1,207 pounds—was, remarkably, within 1% of the true weight” [94, 215].

Such experiments have been repeated over the years to assess knowledge [219], forecast

stock prices [132], identify phishing websites [152, 176], forecast political or social events [39,

120, 131, 192], and predict sporting outcomes [117]. Predictions markets [10] have also

promised to deliver more accurate forecasts on forums generating revenues for the prediction

of highly uncertain events. Crowd-sourcing also was built on similar premises [67, 232].

The most comprehensive empirical investigation of the Wisdom of Crowds, to the best
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of our knowledge, is by Simoiu et al. [215]; they collected around 500,000 answers from

almost 2,000 participants for about 1,000 questions spanning 50 different domains ordered

in 5 categories (knowledge, tacit, popular culture, predictions, and spatial reasoning). They

found that the crowd does better on individual questions and “considerably better than

individuals when performance is computed on a full set of questions within a domain.”

While these experiments use simple aggregation metrics (such as the mean or median

of a sample), others were tested in an attempt to extract an even wiser substrate from the

signals gathered from a group, such as in Prelec’s truth serum [194].

Wisdom of Crowds has also been found to fail in certain setups, for example, situations “in

which emotional, intuitive responses conflict with more rational, deliberative responses” [215].

For instance, Simmons et al. [214] found that participants’ biases prevented them to make

wise decisions in the sports betting context.

The notion of the Wisdom of Crowds is not, as it may first seem, at odds with the idea of

expertise. On the contrary, researchers have identified that often, small crowds of identified

experts perform better than the large less-informed crowds [39, 98, 118, 222]: there is a fine

balance that must be struck between a crowd’s size and its expertise. Liquid democracy

promises to identify such a smaller crowd endogenously.

4.1.3 Experiment Goals

In what follows, we present a series of six experiments to test the efficacy of Liquid Democ-

racy. The experiments were structured as follows. Participants were presented with several

yes or no questions divided into themes. For the set of questions in each theme, which we

call a “task,” they could either choose to vote directly or delegate their vote (for all ques-

tions) to another participant. Even if they delegated on a given task, in a later phase, they

were asked the same questions to see how they would have voted. This allows us to do a
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few things. First, this induces a matched-pair design where, for each task and experiment,

we can compare the accuracy of voting under liquid and direct democracy. Second, we can

use the answers to all questions to estimate participants’ competencies.4 From this, we can

study how delegation behavior depends on expertise. We hypothesized that the behaviors

match the sufficient theoretical conditions of chapter 3; that is, first, participants are less

likely to delegate the more competent they are, and second, on average, more competent

participants tend to receive more delegations. Finally, we investigate whether or not the

estimated behaviors would lead to harmful concentration of power.

The rest of the chapter is organized as follows. In Sections 4.2 and 4.3, we describe the

experimental design and the statistical methods used for inference. Next, in Section 4.4, we

present our results: remarks about the observed delegation graphs, estimation of voter be-

haviors, and a comparison between the performance of liquid and direct democracy. Finally,

Section 4.5 discusses the experiment’s limitations and avenues for future work.

4.2 Experimental Design

In this section, we present the experiments set up and survey material, the survey flow and

the experiments’ demographics.

4.2.1 Experiments

We conducted 𝐸 = 6 experiments between March 21st and November 27th, 2022.5 In each

experiment 𝑒, a group of participants performed |𝒯𝑒| tasks (|𝒯𝑒| = 4, except for experiment

𝑒 = 6 in which |𝒯𝑒| = 12).6 Each task consisted of 8 questions on the corresponding theme.
4This was done taking into account question difficulty using the Item Response Theory framework [75,

141].
5Our protocols E-3766 and E-3948 were approved and exempted by the MIT Committee on the Use of

Humans as Experimental Subjects.
6The final experiment was conducted over a longer period of time, allowing more tasks to be completed.
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Liquid democracy’s core tenet depends on the potential for beneficial delegation. It is

therefore necessary to work with participants that have at least a passing familiarity with

each other. To account for this, experiments were conducted in places such as classrooms

and company workshops, where preexisting group structures guaranteed this. While sig-

nificant preparation was needed to ensure correct experimental set-ups for these irregular

environments, it did have the benefit of producing high-quality data with few missing entries

and minimal drop-out.

A total of 𝑁 = 168 individuals participated. Across all, participants hailed from over

30 countries; 33% were female, 1% were non-binary, 64% were male, and 2% preferred to

self-describe. Each experiment 𝑒 had a number of participants 𝑁𝑒 ranging between 14 to 50.

A description of the settings and group sizes are presented in Table 4.1.

Table 4.1: A description of experiment settings and sizes.

Group ID (𝑒) Setting Group Size (𝑁𝑒)

1 Company employees present at a workshop 14
2 Undergraduate students present in class 22
3 Research department meeting 19
4 Company employees present at a workshop 27
5 Participants at an academic conference 36
6 Participants at an academic conference 50

The described experiments were preceded by a pre-study on 6 different groups.7 Lessons

learned from the pre-study informed the current design, allowing for a more ergonomic survey

design with more questions in the same amount of time, and filtering out ambiguous, wrong,

and trivial questions. Further, the latter experiments coincide and add more power to the

results initially observed in the pre-study.
7A description of the setup and results from the pre-study can be found in Appendix A.8
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4.2.2 Material

Each participant in experiment 𝑒 was faced with |𝒯𝑒| ∈ {4, 12} tasks. To decide whether to

vote or delegate on a task, voters were presented with prompts, described in Table 4.2. A

task involved answering a series of 8 questions so that, in total, the experiments contained

between 32 and 104 questions.8 The questions were primarily taken and adapted from Simoiu

et al. [215] which includes a curated list of epistemic questions (although several prediction

questions pertained to events that had passed, so these were replaced with new ones).

To be consistent with the theoretical setup under study, we converted all categorical

questions into binary questions. For example, for a question from Simoiu et al. [215] of the

form “Where is this famous landmark from?” with four options (Italy, Tibet, Greece, or

Brazil), we selected a possible answer (e.g., Brazil) to reformulate the question as: “Is this

famous landmark from Brazil?” 9 A sample task and question can be found in Figure A.1.

4.2.3 Survey Flow

At the beginning of the survey, participants were asked to provide informed consent before

inputting their name. Next, they were asked to complete all the |𝒯𝑒| tasks (displayed in a

random order).

In the first experimental stage, a participant could either answer a series of questions

related to that theme or delegate the task to a peer. For instance, a task could read: “You

will be shown images of architectural landmarks from around the world, and asked to select

the country where the landmark is located,” followed by “Do you want to vote yourself or

delegate your vote to a trusted peer?” If they chose to vote themselves, they were taken to

the 8 questions contained in the task. If they chose to delegate, they were asked to select
8All questions can be found in our Github repository: https://github.com/ManRev/liquiddemocracy.
9In more detail, we first randomly selected which questions would be correct (to not give a feel that most

questions are incorrect) and then, for the incorrect ones, drew a wrong option at random.
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Table 4.2: Prompts for Each Task

Task prompts presented to participants at the beginning of each task along with which experiments
the task appeared in. After reading it, participants decided to delegate or perform the task them-
selves. If they delegated, they chose another participant to do the task on their behalf. If they
did not delegate, they answered 8 questions related to the task (see all questions on our GitHub
repository https://github.com/ManRev/liquiddemocracy).

ID Task Prompts Corresponding
Experi-
ment(s)

𝑇1 You will be shown images of architectural landmarks from around the
world, and asked to select the country where the landmark is located.

1, 2, 3, 4, 5, 6

𝑇2 You will be provided with short audio files with theme songs from various
movies, and asked to select the movie it was featured in.

1, 2, 3, 4, 5, 6

𝑇3 You will be given English idioms, and asked to identify their meaning.
An idiom is a group of words that have a meaning not deducible from
those of the individual words (e.g., rain cats and dogs, see the light).

1, 2, 3, 4, 5, 6

𝑇4 You will be given upcoming sport events (soccer and tennis games), and
asked to predict the games’ outcome?

1

𝑇5 You will be given the names of tennis players, and asked to predict which
round they will make it to in the Tennis French Open (Roland Garros),
taking place in May-June 2022?

2, 3, 4

𝑇6 You will be given the names of tennis players (women and men), and
asked to predict which round they will make it to in the ongoing Wim-
bledon Tennis Tournament (The Championships, Wimbledon), taking
place between June 27 and July 10, 2022.

5

𝑇7 You will be given upcoming European men soccer games and asked to
predict the games’ outcome.

6

𝑇8 You will be shown images of flags from around the world, and asked to
identify their country of origin.

6

𝑇9 You will be shown 20 images of famous buildings from around the world,
and asked to estimate the year in which the building was completed.

6

𝑇10 You will be shown images of constellations and asked to identify them. 6
𝑇11 You will be given headlines, and asked to identify the magazine that

published the article, between The Economist and WIRED.
6

𝑇12 You will be given words, and asked to identify the correct synonym
corresponding to each word.

6

𝑇13 You will be asked to listen to audio clips of classical compositions, and
asked to identify the composer.

6

𝑇14 You will be given the names of American states, and be asked to predict
whether the majority of Congress members elected in that state will be
Republican or Democrat.

6

𝑇15 You will be given upcoming NBA games and asked to predict the games’
outcome.

6
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the name of their delegate and then immediately directed to the next task. Importantly,

when deciding whether or not to delegate, participants did not see the questions, just the

description.

After completing the tasks, a participant was taken to the second experimental stage to

answer “additional questions.” These were, in fact, all the questions corresponding to tasks

they had chosen to delegate in the first stage. This was done at the end of the experiment so

as not to prime the participants on the exercise and interviews after the experiments revealed

that participants could not guess why they were being asked these questions.

Finally, optional background questions were asked on the last page. Note that the order

in which tasks, questions within each task, and the “True/False” options appeared were all

randomized. The entire flow is summarized in Figure A.1.
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Figure 4.2: Survey Flow

Survey flow with only |𝒯𝑒| = 3 tasks. The green boxes represent the pre and post-survey steps (pro-
viding informed consent, name, and optional background questions). In the first stage, participants
performed tasks, deciding to either delegate (providing a name) or vote (answering the 8 question).
The upper red block exemplifies a task prompt (in which the options “delegate” and “vote” also
appear in a random order). In the second stage, participants answer additional questions (those
they delegated) and optional background questions.

4.3 Analysis Strategies

This section reviews the models used to capture voter behavior from chapter 3.

4.3.1 Notation

Let [𝑁 ] be the set of 𝑁 participants and let [𝐸], the set of 𝐸 experiments. Each experiment

𝑒 ∈ [𝐸] has 𝑁𝑒 participants so that 𝑁 =
∑︀

𝑒∈[𝐸] 𝑁𝑒. We use [𝑁𝑒] to denote the subset of

voters in experiment 𝑒. Let 𝒯 be the set of tasks surveyed (|𝒯 | = 15). For each task 𝑡 ∈ 𝒯
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there is a set 𝑅𝑡 of 8 corresponding questions. We let 𝑅 =
⋃︀

𝑡 𝑅𝑡 be the set of all questions.

For each participant 𝑖, we let 𝑒(𝑖) ∈ [𝐸] be the experiment they participated in and for each

question 𝑟, we let 𝑡(𝑟) ∈ 𝒯 be its corresponding task.

In the experiments, we collect:

(i) The direct vote to each question they answered 𝑣𝑖,𝑟 ∈ {0, 1} where 1 means correct and

0 means incorrect.

(ii) The binary signal 𝛿𝑖,𝑡 equal to 1 if 𝑖 delegated on task 𝑡 and 0 otherwise (note that 𝛿𝑖,𝑡

is constant at the task level).

In general, these parameters should only be defined if a voter participated in an experi-

ment where the corresponding task was present. However, we will abuse notation by ignoring

this subtlety (writing as if all users participated in all tasks), but implicitly restricting to

the voters that actually participated.

From this collected data, we can compute 𝑤𝑖,𝑡, the weight of voter 𝑖 on task 𝑡. This is

their total weight after adding up all transitive delegations; it is set to 0 when they delegate.

In rare cases, a delegation could not be included for a couple of possible reasons. First,

if a participant delegated to somebody who did not complete the survey. In this case, we

would simply ignore the delegation (assuming they directly voted). Second, in an instance of

a cycle (e.g., participant 𝑖 delegated to participant 𝑗 who delegated to participant 𝑖). These

were also ignored (i.e., assumed that no voter on the cycle delegated). In many real-world

implementations, such participants would be notified of the cycle and asked to choose a new

delegate or vote directly.

4.3.2 Assessing Expertise

In order to evaluate how delegation behavior relates to expertise, we need to estimate par-

ticipants’ expertise. We denote by 𝜂𝑖,𝑡 the estimated expertise of participant 𝑖 in task 𝑡. A
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naive way to compute participants’ expertise per task would be to average their number of

correct answers given on all 8 questions of that task, 𝜂naive
𝑖,𝑡 =

∑︀
𝑟∈𝑅𝑡

𝑣𝑖,𝑟

|𝑅𝑡| . However, such a

computation does not account for the varying difficulty of the questions.

Instead, we estimate 𝜂𝑖,𝑡 using the Item Response Theory framework (IRT) [141], which

provides a parametric model to estimate expertise and question difficulty from repeated

measurements. To do this, we fit a one-parameter logistic model to estimate person 𝑖’s

latent ability to task 𝑡, 𝜂𝑖,𝑡, as well as question 𝑟’s latent difficulty, 𝜃𝑟, where the probability

that person 𝑖 is correct to question 𝑟 depends on the person’s ability at task 𝑡 and the

question’s difficulty.10 Specifically, we assume a generative process of

Pr[𝑣𝑖,𝑟 = 1|𝜂𝑖,𝑡, 𝜃𝑟] =
1

1 + exp−(𝜂𝑖,𝑡−𝜃𝑟)

and fit 𝜂𝑖,𝑡 and 𝜃𝑟 to be consistent with the observed answers 𝑣𝑖,𝑡. We fit these parameters in

the canonical way using the Python package py-irt. See Natesan et al. [179] for more details.

While 𝜂naive
𝑖,𝑡 takes on one of nine values (multiples of 1/8), 𝜂𝑖,𝑡 is a continuous variable

that can take on arbitrary values in R. We normalize so that 𝜂𝑖,𝑡 ∈ [0, 1], and assume this to

be the expertise, the probability of being correct. The correlation between 𝜂naive
𝑖,𝑡 and 𝜂𝑖,𝑡 is

above 94% (see Figure 4.3 for difference in distributions.)

4.3.3 Estimating the 𝑞 function

Recall that 𝑞(𝜂) represents the probability that somebody of competence 𝜂 chooses to del-

egate. We have observations 𝛿𝑖,𝑡 encoding participant 𝑖′s delegation choice for task 𝑡, and

an estimate 𝜂𝑖,𝑡 of 𝑖’s expertise on task 𝑡. Intuitively, fitting a logistic model, regressing 𝛿𝑖,𝑡

10We also fit a three-parameter logistic model estimating Pr[𝑣𝑖,𝑟 = 1|𝜂𝑖,𝑡, 𝜃𝑟, 𝑐𝑟, 𝑎𝑟] = 𝑐𝑟+
1−𝑐𝑟

1+exp−𝑎𝑟(𝜂𝑖,𝑡−𝜃𝑟) ,

with 𝑐𝑟, the effect of guessing on question 𝑟 and 𝑎𝑟, the degree to which question 𝑟′ differentiate between
participants. The resulting expertise levels are highly correlated and we stick with the one-parameter model
as a result.
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Figure 4.3: Distribution of Expertise using the naive and IRT frameworks

Distribution of expertise 𝜂naive
𝑖,𝑡 and 𝜂𝑖,𝑡 across all tasks and participants, computed with the naive

and IRT frameworks respectively. The naive framework use the average correct answers per task
per participant as expertise. The IRT framework involves parameters estimation to account for
participants’ expertise as well as questions’ difficulty. The correlation between both frameworks is
over 94%.

against 𝜂𝑖,𝑡 estimates the probability that someone with expertise 𝜂𝑖,𝑡 delegates. The follow-

ing equation shows the relationship we wish to fit, where 𝛼0 is the intercept and 𝛽𝑞 is the

effect size we measure:

log

(︂
Pr[𝛿𝑖,𝑡 = 1]

1− Pr[𝛿𝑖,𝑡 = 1]

)︂
= 𝛼0 + 𝛽𝑞𝜂𝑖,𝑡 + 𝜀𝑖. (4.1)

To account for potential correlation in the error term within participants’ answers, when

estimating the parameters in Equation (4.1), we cluster standard errors at the participant

level. We test for the data normality in Appendix A.3.2.11

11For a more detailed analysis of what explains the trend we observe, we can add fixed effects to the
model to account for intrinsic characteristics of the participants (such as confidence) or of the tasks (such as
difficulty).

We can then fit a two-stage model that can be combined in the following generalized linear model with
fixed effects:

log

(︂
Pr[𝛿𝑖,𝑡 = 1]

1− Pr[𝛿𝑖,𝑡 = 1]

)︂
= 𝛼0 + 𝛼𝑖 + 𝛼𝑡 + 𝛽𝑞𝜂𝑖,𝑡 + 𝜀𝑖 (4.2)

where 𝛼0 is the population average across participants and tasks, 𝛼𝑖 is the fixed effect for person 𝑖 and 𝛼𝑡 is
the fixed effect for task 𝑡, 𝛽𝑞 is the model’s estimate. See Table A.2 for results.
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We repeat the procedure above on data sets filtered by task, this time having a distinct

𝛽𝑡 for each task 𝑡 to measure the task-specific estimates.

4.3.4 Estimating the 𝜙 function

Recall that in the theoretical model, a voter with competence 𝜂1 delegates to another with

competence 𝜂2 with probability proportional to 𝜙(𝜂1, 𝜂2). In comparison to 𝑞, estimating

𝜙 is more challenging. To make this more tractable, we first bucket the observed expertise

levels into 𝐵 clusters 𝑐1, . . . , 𝑐𝐵. We will assume that 𝜙 is constant accross inputs in the

same bucket, and fit it based on bucket “centers”, 𝜂1, . . . 𝜂𝐵, which are simply taken to be

the mean values of the competences in each bucket, i.e., 𝜂ℓ =
∑︀

𝑖,𝑡:𝜂𝑖,𝑡∈𝑐ℓ
𝜂𝑖,𝑡

|{(𝑖,𝑡)|𝜂𝑖,𝑡∈𝑐ℓ}|
. This means we

can estimate 𝜙(𝑥, 𝑦) using the numbers of delegations from any expertise 𝑥′ to expertise 𝑦′

where 𝑥′ and 𝑦′ fall in the same bucket as 𝑥 and 𝑦, respectively. Finally, we determine the

Kendall tau rank correlation coefficient between 𝜙(𝑥, 𝑦) and 𝑦 with its associated p-value to

test for monotonic relation between 𝜙 and its second coordinate.

4.3.4.1 Binning strategies

We discritize the segment [0, 1] into 𝐵 buckets. We do so using several methods (to ensure

the robustness of our approach); we describe here the 𝑘-means clustering procedure and

discuss the rest in Appendix A.6.4.

To bin using 𝑘-means, we optimize for 𝐵 clusters, 𝑐1, . . . , 𝑐𝐵, that minimize

𝐵∑︁
𝑘=1

∑︁
𝜂𝑖,𝑡∈𝑐𝑘

(︃
𝜂𝑖,𝑡 −

∑︀
𝜂𝑖,𝑡∈𝑐𝑘 𝜂𝑖,𝑡

|𝑐𝑘|

)︃2

.

In words, we computer a partition of the [0, 1] segment such that the total squared distance

from elements to their cluster centers is minimized. We use the standard 𝑘-means clustering
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algorithm to find the clusters [114] and use the Kneedle algorithm [211] to optimize number

of clusters 𝐵.

4.3.4.2 Estimation of 𝜙 for a given delegation graph

Next, we wish to fit a function 𝜙 that induces the relations we observe reasonably well. Note

that because the number of participants in each bucket changes for different experiments/-

tasks, it is difficult to fit a single function. Instead, we make this more tractable by first

finding the most likely 𝜙 to have generated each experiment/task and then combining these

to find an overall best fit.

When estimating, we only fit cluster centers, 𝜙(𝜂ℓ, 𝜂𝑘) for each ℓ, 𝑘 ∈ [𝐵]. Further, when

doing the parametric fitting to combine these estimates, we will do it separately for each

first coordinate input, so for conciseness, we write 𝜙ℓ(𝜂) := 𝜙(𝜂ℓ, 𝜂).

Fix a delegation graph, corresponding to experiment 𝑒 and task 𝑡. We are interested in

reconstructing the most likely estimate of 𝜙ℓ
𝑒,𝑡(𝜂𝑘) (we will drop 𝑒 and 𝑡 from the notation

when they are clear from context). Let 𝑧ℓ𝑘 be the observed number of times that someone of

type ℓ delegated to someone of type 𝑘. Let 𝑛ℓ be the number of people of type ℓ, and let 𝑛̃ℓ

be the number of people of type ℓ that delegated.

Proposition 1. The maximum likelihood estimators for 𝜙ℓ
𝑒,𝑡(𝜂1), . . . , 𝜙

ℓ
𝑒,𝑡(𝜂𝐵) satisfy

𝑧ℓ𝑘
𝑛̃ℓ

=

⎧⎪⎨⎪⎩
𝑛𝑘𝜙

ℓ(𝜂𝑘)∑︀
𝑗∈[𝑏] 𝑛𝑗𝜙ℓ(𝜂𝑗)−𝜙ℓ(𝜂ℓ)

if 𝑘 ̸= ℓ

(𝑛𝑘−1)𝜙ℓ(𝜂𝑘)∑︀
𝑗∈[𝑏] 𝑛𝑗𝜙ℓ(𝜂𝑗)−𝜙ℓ(𝜂ℓ)

otherwise.
.

Proof. Fix an experiment 𝑒 and task 𝑡. These parameters correspond to a delegation graph

with multiple delegations.

Fix an expertise type ℓ. We will investigate the delegation going out from participants
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of type ℓ. Recall that 𝑛̃ℓ is the number of participants of type 𝑖 that delegated and 𝑛𝑖 is the

total number of participants of type 𝑖 in the graph. Let 𝑧ℓ𝑘 be the number of delegations

given from participants of type ℓ to participants of type 𝑘. Let 𝜙ℓ(𝜂𝑘) be the weight with

which a participant of type ℓ selects a participant of type 𝑘 (and it needs to be normalized

by the sum of the weights to obtain a probability).

We can view the generation of the graph as 𝑛̃ℓ trials of a 𝐵 sided dice: each type

𝑘 ∈ {1, · · · , 𝐵} is selected with probability 𝑛𝑘𝜙
ℓ(𝜂𝑘)∑︀𝐵

𝑗=1 𝑛𝑗𝜙ℓ(𝜂𝑗)
, where 𝑛𝑘 =

⎧⎪⎨⎪⎩ 𝑛𝑘 if 𝑘 ̸= ℓ

𝑛ℓ − 1 otherwise.
(This is because there are 𝑛ℓ − 1 participants of type ℓ available to receive the delegation

from a participant of type ℓ.) The variable 𝑧ℓ𝑘 tracks the number of times that outcome 𝑘

occurred in the trials and follows a multinomial distribution with 𝑧ℓ𝑘 ∈ {1, . . . , 𝑛̃ℓ}.

Let ℓ(𝜙⃗) be the likelihood of the instance observed, with 𝜙⃗ = {𝜙ℓ(𝜂1), . . . , 𝜙
ℓ(𝜂𝑏)}, then

𝐿(𝜙⃗) = 𝑛̃ℓ!
𝐵∏︁

𝑘=1

(︃
𝑛𝑘𝜙

ℓ(𝜂𝑘)∑︀𝐵
𝑗=1 𝑛𝑗𝜙ℓ(𝜂𝑗)

)︃𝑧ℓ𝑘
1

𝑧ℓ𝑘!

and

log(𝐿(𝜙⃗)) = log(𝑛̃ℓ!) +
𝐵∑︁

𝑘=1

𝑧ℓ𝑘 log(𝑛𝑘𝜙
ℓ(𝜂𝑘))− 𝑧ℓ𝑘 log(

𝐵∑︁
𝑗=1

𝑛𝑗𝜙
ℓ(𝜂𝑗))− log(𝑧ℓ𝑘!).

To find the maximum likelihood estimator, we differentiate the log-likelihood above to
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get

𝜕 log(𝐿(𝜙⃗))

𝜕𝜙𝑚

=
𝑧ℓ𝑚

𝜙ℓ(𝜂𝑚)
− 𝑛𝑘∑︀𝐵

𝑗=1 𝑛𝑗𝜙ℓ(𝜂𝑗)

𝐵∑︁
𝑗=1

𝑧ℓ𝑗

=
𝑧ℓ𝑚

𝜙ℓ(𝜂𝑚)
− 𝑛𝑘∑︀𝐵

𝑗=1 𝑛𝑗𝜙ℓ(𝜂𝑗)
𝑛̃ℓ

= 0

Re-arranging the equation above, we find that

𝑧ℓ𝑘
𝑛̃ℓ

=

⎧⎪⎨⎪⎩
𝑛𝑘𝜙

ℓ(𝜂𝑘)∑︀
𝑗∈[𝑏] 𝑛𝑗𝜙ℓ(𝜂𝑗)−𝜙ℓ(𝜂ℓ)

if 𝑘 ̸= ℓ

(𝑛𝑘−1)𝜙ℓ(𝜂𝑘)∑︀
𝑗∈[𝑏] 𝑛𝑗𝜙ℓ(𝜂𝑗)−𝜙ℓ(𝜂ℓ)

otherwise.

For consistency across the experiments, we also impose
∑︀𝐵

𝑘=1 𝜙
ℓ(𝜂𝑘) = 1. We hence have

𝐵 + 1 equations with 𝐵 parameters, but note that
∑︀𝐵

𝑘=1

𝑧ℓ𝑘
𝑛̃ℓ

= 1 so that the equations from

section 4.3.4.2 are linearly dependent. Finally, it suffices to solve 𝜙ℓ(𝜂𝑘) = 𝛼 × 𝑧ℓ𝑘
𝑛𝑘 and

normalize through
∑︀𝐵

𝑘=1 𝜙
ℓ(𝜂𝑘) = 1 to obtain our estimates for 𝜙ℓ(𝜂𝑘).

12

4.3.4.3 Testing for monotonic dependence of 𝜙 in its second coordinate

Finally, we test for potential monotonic dependence of 𝜙ℓ
𝑒,𝑡(𝜂𝑘) as a function of 𝜂𝑘 computing

the Kendall tau rank correlation coefficient and its associated p-value. Let 𝑅(𝜙ℓ
𝑒,𝑡(𝜂𝑘)) be

the rank of 𝜙ℓ
𝑒,𝑡(𝜂𝑘) amongst all the estimated weights and 𝑅(𝜂𝑘) be the rank of 𝜂𝑘 amongst

all the expertise, we then compute

𝜏 =

∑︀
𝑘∈[𝑁 ] I[𝑅(𝜙ℓ

𝑒,𝑒,𝑡,𝑘(𝜂𝑘)) = 𝑅(𝜂𝑘)]−
∑︀

𝑘∈[𝑁 ] I[𝑅(𝜙ℓ
𝑒,𝑡(𝜂𝑘)) ̸= 𝑅(𝜂𝑘)]

𝑁 −𝑁𝜙 −𝑁𝜂

.

12We show another approach of Proposition 1 in Appendix A.6.
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where 𝑁𝜙, 𝑁𝜂 represent the number of ties in 𝑅(𝜙ℓ
𝑒,𝑡(𝜂𝑘)) and 𝑅(𝜂𝑘) respectively. Next, we

compare the z-score for the Kendall tau rank, 𝑧 =
3𝜏
√

𝑁(𝑁−1)2(𝑁−2)√
8(𝑁(𝑁−1)+5)

that we compare to the

values of a Gaussian distribution (or, more precisely, we let the function stats.kendalltau

in python’s library scipy handle all of this for us). We further check the Kendall tau rank

correlation coefficient between 𝜙ℓ
𝑒,𝑡(𝜂𝑘) and 𝜂𝑘 for a fixed ℓ.13

4.3.5 Core Lemma Desiderata: Concentration of Power and In-

crease in Average Expertise Due to Delegation

We also measure the quantities of interest in chapter 3’s core lemma, specifically, the max-

imum weight accumulated by any participant and the average increase in expertise post

delegation. For every experiment 𝑒 and task 𝑡, we note by 𝑚𝑒,𝑡 = max𝑖∈[𝑁𝑒] 𝑤𝑖,𝑡 and by

𝜂𝐿𝑒,𝑡 =
∑︀

𝑖∈[𝑁𝑒]
𝑤𝑖,𝑡𝜂𝑖,𝑡

𝑁𝑒
(respectively 𝜂𝐷𝑒,𝑡 =

∑︀
𝑖∈[𝑁𝑒]

𝜂𝑖,𝑡

𝑁𝑒
) the average expertise after delegation

(respectively without delegation).

For each experiment, we display a blox plot of the different maximum weights 𝑚𝑒,𝑡 per

task. We further run a linear regression with fixed effects to measure the difference in mean

expertise with and without delegation. Specifically, let 𝜁 be the vector where all the 𝜂𝐿𝑒,𝑡 and

𝜂𝐷𝑒,𝑡 are stacked, and 𝛾 the vector indicating whether the 𝑗𝑡ℎ entry of 𝜁 is with or without

delegation (𝛾𝑗 = 1 if 𝜁𝑗 is the estimate for liquid democracy and 0 otherwise). Each entry 𝑗

of 𝜁 is then the average expertise under the different experimental conditions (either liquid

or direct) for a given experiment and a given task, inducing a match paired design.

Then

𝜁𝑗 = 𝛼0 + 𝛼𝑒(𝑖) + 𝛼𝑡 + 𝛽lemma𝛾𝑗 + 𝜀𝑡,𝑒, (4.3)

estimates 𝛽lemma, the difference between the mean expertise with delegation and the mean

expertise without delegation, accounting for experiment and task fixed effects, and clusters
13We provide an analysis at the task level in Table A.2.
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the standard error at the level of a pair (task, experiment) to account for the match paired

design.14

4.3.6 Liquid Democracy versus Direct Democracy

Finally, we measure the results of liquid democracy versus direct democracy. Note that the

result of chapter 3 for the comparison are asymptotic and not something we can replicate

here. Instead, we investigate whether the liquid vote is more often right (that is, above

0.50) than the direct vote. We denote by 𝑜𝐿𝑒,𝑡 (resp. 𝑜𝐷𝑒,𝑡) the average number of times

where liquid (resp. direct) democracy is correct for each task and experiment. That is:

𝑜𝐿𝑒,𝑡 =
∑︀

𝑟 I[
∑︀

𝑖∈[𝑁𝑒]
𝑣ℓ𝑖,𝑟 > 𝑁𝑒/2]/8 and 𝑜𝐷𝑒,𝑡 =

∑︀
𝑟 I[
∑︀

𝑖∈[𝑁𝑒]
𝑣𝐷𝑖,𝑟 > 𝑁𝑒/2]/8. We can run the

same regression as Equation (4.3) with a response variable being the vector of 𝑜𝐿𝑒,𝑡 and 𝑜𝐷𝑒,𝑡

stacked accordingly. Let 𝛽LvD be the resulting regression estimate.

4.4 Results

We briefly cover high-level statistics of the delegations and then dive into the analysis of voter

behavior. After this, we examine the relative performance of liquid and direct democracy.
14Note that, for each experiment 𝑒 and question 𝑟, we can also estimate the performance of direct democ-

racy for the question and that group through 𝑑𝑒,𝑟 =
∑︀

𝑖∈𝑁𝑒
𝑣𝐷
𝑖,𝑟

𝑁𝑒
(the proportion of correct answers across the

group) and that of liquid democracy through ℓ𝑒,𝑟 =
∑︀

𝑖∈𝑁𝑒
𝑣ℓ
𝑖,𝑟

𝑁𝑒
=

∑︀
𝑖∈𝑁𝑒

𝑣𝐷
𝑖,𝑟×𝑤𝑖,𝑡

𝑁𝑒
(the weighted proportion of

correct answers across the group). There is, then, severe correlation within tasks: remember that the ℓ𝑒,𝑟 for
each question 𝑟 are computed with the same weights 𝑤𝑖,𝑡). Let 𝜌 be the vector that stacks all the outcome of
direct and liquid democracy and 𝛾 be the vector that indicates whether the 𝑗𝑡ℎ entry of 𝜌 is liquid or direct
democracy. We can then specifying the following model,

𝜌𝑗 = 𝛼0 + 𝛼𝑒(𝑖) + 𝛼𝑟 + 𝛽outcome𝛾𝑗 + 𝜀𝑟,𝑒, (4.4)

with a fixed effect for the question 𝑟 (as the questions are nested in the tasks 𝑡 and adding a task fixed effect
would be redundant) and clustering at the level of a pair (𝑒, 𝑟) to account for the match paired design. If
the expertise was computed using the naive method and the various experiments had the same number of
participants, 𝛽outcome and 𝛽lemma would be estimating the exact same quantity. Given that the expertise
computed through the IRT framework and that derived from the naive method are highly correlated, we
observe that coefficients from both specifications are almost identical.
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4.4.1 Delegation statistics and visuals

For each task 𝑡 and experiment 𝑒, we show in Figures 4.4 and A.4 to A.7 examples of delega-

tion graphs across different experiments and tasks, with all 𝑁𝑒 participants in experiments

𝑒, represented by nodes labeled by their percentage of correct answers to that task 𝜂naive
𝑖,𝑡 .

Figures 4.4, A.4 and A.6 display examples of relatively little concentration of power with

delegations reaching participants with relatively high expertise, Figure A.5 displays some of

the worst concentration of power observed across the 32 instances and Figure A.7 illustrates

an example of relatively little concentration of power with delegations reaching participants

with relatively low expertise.
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Figure 4.4: Delegation graphs for task 𝑇7 from Experiment 6. Each node is a voter and
the node’s number represents the rounded proportion of correct answers given by the voter,∑︀

𝑟∈𝑅𝑡
𝑣𝑖,𝑟

8
.

Over the course of the six experiments based on five tasks each, we observed only four

delegation cycles, and all were only of size two (where 𝑎 delegates to 𝑏, and 𝑏 delegates back

to 𝑎). These occurred in Experiment 4 with 𝑁4 = 27, and in Experiment 6 with 𝑁6 = 50.
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Over the 1096 (participant/task) pairs, we observed a total of 505 delegations meaning

participants delegated 47% of the time (𝑠𝑡𝑑 = 0.49 The rate varied across experiments from

32% (𝑠𝑡𝑑 = 0.49) in experiment 2 to 54% (𝑠𝑡𝑑 = 0.50) in experiment 5 and across tasks from

22% (𝑠𝑡𝑑 = 0.50) in task 𝑇8 to 80% (𝑠𝑡𝑑 = 0.40) in task 𝑇15. Among those who voted directly,

15% received only one delegation besides their own (hence had weight 2 in the decision), 6%

received two delegations, and just about 5% received five or more delegations However, in

one experiments, a participant concentrated more than half of the votes, for the prediction

task in experiments 5.

While we might worry that delegation patterns vary across gender due to significant

differences in confidence across gender [e.g., 78, 210], we actually find no significant dif-

ferences in these experiments, neither in measured expertise in tasks nor in propensity to

delegate. ANOVA tests for the propensity to delegate (resp. expertise) across gender shows

no significant differences with 𝑝 = 0.464 (resp. 𝑝 = 0.112). Tukey tests for pairwise mean

comparison further validate the absence of significant differences across the different genders

(see Appendix A.3.1).

4.4.2 Estimating the 𝑞 function

In this section, we show that the probability of delegating is decreasing with expertise,

as a result of the regression analysis presented in Equation (4.1), confirming chapter 3’s

assumption on the probability to delegate.

We estimate the 𝑞 function that models probability of delegating as a function of expertise,

following the specifications in Equation (4.1) to assess the function overall and across each

task respectively. We find 𝛽𝑞 = −2.24, with standard error 𝑠.𝑒. = 0.42, statistics 𝑧 = −7.12
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and p-value 𝑝 = 10−7. In turn, we estimated that

𝑞(𝜂𝑖,𝑡) = ̂︁Pr[𝛿𝑖,𝑡 = 1] =
1

1 + exp−(−1.39−2.24×𝜂𝑖,𝑡)

and that the probability of delegating decrease with expertise. Note that this characteristic

is consistent with the confidence based model of chapter 3.

We relegate to Appendix A.5 further results and discussions: Table A.2 shows the results

including the fixed-effects as specified in Equation (4.2), and Table A.3 displays the effects

per task for task.

4.4.3 Estimating the 𝜙 function: Delegation Choice as a Function

of Expertise

Herein, we report the results for the model specifications spelled out in Section 4.3.4 that

measure potential connections between the delegation choices and expertise. In this section,

we display the results based on 𝑘-means clustering, and provide further details on varying

methods and bucket sizes in Appendix A.6, showing that the significant trends we observe

are invariant across different bucket sizes.

4.4.3.1 𝑘-means clustering results

We find an optimal number of clusters equal to 4 (that is the number of clusters at which the

decay is within the sum of standard errors flattens as estimated by the kneedle algorithm).

The resulting centroids are 0.43, 0.6, 0.75 and 0.88, and the intervals span are, respectively,

𝑐1 = [0.00, 0.514], 𝑐2 = [0.515, 0.674], 𝑐3 = [0.677, 0.814] and 𝑐4 = [0.818, 1.00]. There are,

respectively, 16%, 32%, 35% and 17% of the data points in each cluster.
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4.4.3.2 Estimation of 𝜙

Section 4.4.3.2 shows as a blue cross, for each expertise level 𝜂ℓ, the value of 𝜙𝑒,𝑡
𝑙,𝑘 computed for

every experiment, task and expertise level 𝜂𝑘. The pink points represent the average across

all experiment and task for a given 𝜂𝑘, and the regression line corresponds to an ordinary

least square regression on the mean values.

Table 4.3: Delegation Percentages by Bucket

Each row represents how often participants from a given bucket delegate to those in other buckets.

Bucket 𝑐1 𝑐2 𝑐3 𝑐4
𝑐1 15% 22% 27% 43%
𝑐2 18% 20% 36% 26%
𝑐3 18% 23% 33% 26%
𝑐4 12% 18% 34% 36%
Overall 16% 21% 32% 31%

Overall, participants from bucket 𝑐1 receive 16% of the delegations, those from bucket 𝑐2

receive 21%, those from bucket 𝑐3 receive 32% and those from bucket 𝑐4 receive 31%.

To test the significance of the trends observed in Section 4.4.3.2, we test whether the

Kandall tau rank correlation coefficient between 𝜙𝑒,𝑡(𝜂ℓ, 𝜂𝑘) = 𝜙ℓ
𝑒,𝑡(𝜂𝑘) and 𝜂𝑘 signals signif-

icant associations according to Section 4.3.4.3, both at the overall level, and when fixing ℓ,

or 𝜂ℓ, the first coordinate in 𝜙𝑒,𝑡(𝜂ℓ, 𝜂𝑘). Table 4.4 shows the resulting correlation coefficients

and significance tests.

Table 4.4: Results on the Relation between Delegation Behaviors and Average Expertise or
Confidence

The summary of the average and heterogeneous effects, estimated by Section 4.3.4.3.

Overall For fixed ℓ

𝑐1 𝑐2 𝑐3 𝑐4

Correlation 0.17**** 0.29** 0.12* 0.11 0.28***

P-value 2× 10−5 2× 10−2 9× 10−2 1× 10−1 3× 10−3

Note: *p<0.1; **p<0.05; ***p<0.01; ****p<0.0001
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Figure 4.5: Estimates of 𝜙

Each of four plots on the left represents the values of 𝜙𝑒,𝑡
𝑙,𝑘 for a fixed type ℓ. The blue crosses

show the values computed for 𝜙𝑒,𝑡
𝑙,𝑘 at each possible 𝜂𝑘. The pink dots show the average across

all 𝜙𝑒,𝑡
𝑙,𝑘 at a level 𝜂𝑘, and the pink line corresponds to a linear regression over the mean values.

We observe increasing trends across the board, with slope (coefficient of determination) being
0.53(0.90), 0.28(0.46), 0.29(0.47) and 0.60(0.92) respectively. The plot on the right shows the values
for 𝜙𝑒,𝑡

𝑙,𝑘 across all ℓ. The linear fits outputs a slope of 0.38 (coefficient of determination: 0.85).
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Note that this characteristic is consistent with the general continuous model of chapter 3.

In turn, the delegation trends we observe empirically seem to indicate that, with a complete

graph and independent votes, participants behave in such a way that liquid democracy should

satisfy positive gain and do no harm asymptotically, per chapter 3’s theoretical results.

4.4.4 Core Lemma Desiderata: Concentration of Power and In-

crease in Average Expertise Due to Delegation

While it is challenging to estimate the relation between the maximum delegation weight 𝑚𝑒,𝑡

per experiment and per task with little variability in the sample sizes 𝑁𝑒, we provide a box

plot with the maximum weight reached across experiments for each task in Figure 4.6.15
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Figure 4.6: Maximum Weights

From left to right, a box plot of the maximum weight 𝑚𝑒,𝑡 for each experiment 𝑒 ordered in increasing
𝑁𝑒. The box plot represent the variations in 𝑚𝑒,𝑡 for a fixed experiment.

Next, we estimate the average increase in expertise post delegation through the model
15Another interesting analysis, unrelated to the theoretical results in chapter 3 results, is to compute

the minimal size of a majority coalition, that is the minimal number of participants that vote directly and
received, in total, at least half of the total votes. This analysis can be found in Appendix A.7.
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specification Equation (4.3). We find 𝛽lemma = 0.031 with 𝑠.𝑒. = 0.006, 𝑡 = 4.78 and

𝑝 = 0.000004. In other words, across all tasks and experiments, the mean average expertise

post delegation is 3% higher than the mean average expertise without delegation.

Recall that chapter 3 found that delegation mechanisms that resulted in 𝑚𝑒,𝑡 = 𝑜(𝑁𝑒) and

𝜂ℓ𝑒,𝑡 − 𝜂𝐷𝑒,𝑡 > 𝛼 for a fixed 𝛼 > 0 were likely to satisfy probabilistic do no harm and positive

gain. While we cannot draw conclusions about the size of 𝑚𝑒,𝑡, the latest fixed-effect linear

model results indicate that the second condition of their core lemma is satisfied.

Finally, we report the results from the specification in Equation (4.4). We find 𝛽LvD =

0.0313 with 𝑠.𝑒. = 0.025, 𝑡 = 1.229 and 𝑝 = 0.23. In other words, liquid democracy’s average

proportion of correct answers is 3 points above that of direct democracy, but this increase is

not significant. We show in Figure 4.7 the frequency at which liquid and direct democracies

are correct for varying questions across each task.

Recall that we gathered one vote per question 𝑟, and that the results shown above for

different tasks was averaged across all questions within that task. More work is needed

to test the asymptotic results of chapter 3; the present analysis shows that, even if liquid

democracy may outperform direct democracy, it is by a small margin.
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Figure 4.7: Frequency of Correctness for Liquid and Direct Democracies Averaged Per Task

A red triangle represents the proportion of correct liquid vote for a given task 𝑡,∑︀
𝑒,𝑟 I[

∑︀
𝑖∈[𝑁𝑒]

𝑣𝐷𝑖,𝑟×𝑤𝑖,𝑡>𝑁𝑒/2]

|𝑅𝑡|×𝜖 where 𝜖 is the number of experiments that included task 𝑡. Similarly, a

blue circle represents the proportion of correct direct vote for a given task 𝑡,
∑︀

𝑒,𝑟 I[
∑︀

𝑖∈[𝑁𝑒]
𝑣𝐷𝑖,𝑟>𝑁𝑒/2]

|𝑅𝑡|×𝜖 .

4.5 Discussion

This chapter was aimed at evaluating empirically the conditions identified in chapter 3 needed

to guarantee the performance of liquid democracy with high probability asymptotically.

While we find that delegation trends and aggregate delegation metrics are empirically aligned

with chapter 3’s theoretical work, this empirical analysis also has some shortcomings.

First, the analysis does not provide a framework to evaluate liquid democracy’s asymp-

totic behavior. While we observe a marginal improvement using liquid democracy, it is a

small improvement that varies greatly across tasks, hinting towards the idea that differ-
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ent tasks would benefit from liquid democracy to different extent. More research would be

needed to test which tasks benefit from liquid democracy.

Second, while chapter 3 assume that anyone can delegate to anyone else, the groups with

which we ran the experiment did not necessarily follow this structure: not all group members

knew each other. More research is needed to understand how the graph topology impacts

chapter 3’s results.

Third, some delegations were problematic, either because they were given to someone

who did not participate, or because they were cyclical. We removed such delegations under

the assumptions that, due to their small number, such interventions would not impact our

results. More research is needed, however, to understand whether problematic delegations

are common and how to handle them.

In summary, this chapter focused on the epistemic performance of liquid democracy,

where participants decide on a binary issue for which there is a ground truth, and tested

the sufficient conditions on the delegation behaviors found by chapter 3. We find that

participants are more likely to delegate when they are less competent and that delegation

go more often to those with higher expertise, corroborating the most demanding of Halpern

et al.’s conditions.

In addition to these comments, note that the current survey did not incentivize partic-

ipants to make good or bad decisions. Future directions could include testing whether the

epistemic performance of liquid democracy and the roles of expertise and confidence change

in the presence of rewards for good answers, taken either directly or through transitive

delegations.

Finally, note that the scope of this study is particularly narrow as it only considers

binary questions with correct answers. In short, epistemic studies of voting relate primarily

to the instrumental value of democracy. This informs efforts to deploy liquid democracy in

prediction markets or to make corporate decisions with clear (but hard to achieve) goals.
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However, deploying liquid democracy in political settings, for instance, would require further

research and tests on the intrinsic value of delegations and how they relate to paradigms of

representation of conflicting moral values that may not reduce to factual evidence. Further

work at the intersection of political philosophy and social choice would be most needed to

understand these other aspects of liquid democracy.16

16The two dimensions that are usually used to evaluate decision-making processes are the epistemic dimen-
sion (accuracy of the voting outcome.) and the procedural dimension (fairness of the procedure). Debates
on the validity and comparison of the dimensions in institutional design are out of the scope of this chapter,
but interested readers should refer to Chiara Destri’s essay on the matter [68].
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Chapter 5

A Descriptive Analysis of Liquid

Democracy’s Procedural Performance

Abstract

Delegation dynamics in large groups for contentious and potentially polarizing issues remain

under-studied in the literature focusing on liquid democracy. This chapter presents the

results of an experiment ran with an academic institution, in which 117 people participated,

answering 11 questions about the institute’s governance. While it has often been mentioned

that cycles and concentration of power are practical threats to liquid democracy, we find that

those are unlikely: there are only 3 two-cycles and no evidence of concentration of power.

However, we find that a large portion of persons that are delegated to (about 19%) did not

participate in the survey, posing serious practical concerns.
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5.1 Introduction

Liquid democracy was defined as an (i) area-specific voting scheme (ii) based on transitive

proxy voting (iii) with instant recall [230]. Practitioners have worried that it could lead

to undue concentration of power [19] or to problematic cycles. Further, liquid democracy

experiments where participants can delegate to different persons for different issues are rare,

so that little is known about the delegation choices participants would make in varying

contexts. As a first step towards improving our understanding of the empirical aspects of

liquid democracy, we investigate herein characteristics of its procedure: we report descriptive

metrics regarding delegation graphs, cycles, concentration of power, size of majority coalition,

absenteeism and individual delegation behaviors.

5.1.1 Problem Statement

In this chapter, we are particularly interested in scenarios where groups have to decide on

open and potentially divisive questions. How would group members delegate questions that

are inherently subjective and that could impact the long-term governance of their organiza-

tions?

5.1.2 Contributions

This chapter provides, to the best of our knowledge, the first descriptive analysis of a lab

experiment that can test procedural aspects of liquid democracy. The chapter reports de-

scriptive metrics for high-level delegation trends and participants’ behavior. We find rare

examples of cycles and concentration of power but, instead, warn against the risk of delega-

tions reaching people who abstain from participating in the decision-making process. While

some started looking into the problems of delegations leading no-where [38] from a theoret-
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ical lens, it had not yet been explored empirically. Further, we observe frequent transitive

delegations and issue-specific delegation choices, using liquid democracy in a way consistent

with how it was envisoned in Valsangiacomo [228].

5.1.3 Related Work

To the best of our knowledge, there are only two liquid democracy experiments based on

subjective questions: Hardt and Lopes [113] asked to decide on food menus to employees

and Kling et al. [137] organically conducted an experiment in a political environment. Fur-

ther, scholars and practitioners have developed a platform, LiquidFeedback ([21]), to support

community governance based on liquid democracy (but they typically do not report on the

case studies since those are conducted by their partners). For other pointers to experimental

work related to liquid democracy, see Chapter 4.

5.2 Experimental Design

5.2.1 Recruitement

The survey was active between May, 11th 2022 and June, 1st 2022.1 One hundred seventeen

(117) persons responded, out of the 263 members listed on the IDSS’ website. E-mails were

sent to the community about the survey, and QR codes were distributed around the office

spaces. The breakdown of participants per occupation can be found in Table 5.1.
1The protocol E-3948 was approved and exempted by the MIT Committee on the Use of Humans as

Experimental Subjects.
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Faculty Postdoc Staff Student Total

IDSS Community 91 52 17 103 263
Survey Participants 24 15 14 64 117
Participation Rate 0.26 0.39 0.82 0.62 1
Composition of Survey Pool 0.20 0.12 0.11 0.54 1

Table 5.1: Participation per Occupation

5.2.2 Material

Eleven open questions spanning from operational problems to vision-setting dilemmas were

asked – see Table 5.2.

Question ID Prompt

Question 1 Which restaurants / caterers / vendors should IDSS use to provide IDSS
lunches?

Question 2 What new practices could IDSS adopt to strengthen unusual connections
across disciplines?

Question 3 What strategies would you recommend to help IDSS students navigate
their search for advisors and projects?

Question 4 Should there be a requirement for *all* IDSS theses to include rigorous
statistics?

Question 5 Should IDSS create its own academic journal?
Question 6 What are the the most significant factors in determining whether IDSS

students enter a satisfying / rewarding / fulfilling career trajectory after
graduate school?

Question 7 What are the key factors to consider in deciding between industry and
academic careers?

Question 8 What issues do you think the MIT graduate student union should focus
on?

Question 9 What should the topic(s) of the next IDSS faculty retreat be?
Question 10 Should IDSS have an undergraduate degree program?
Question 11 In previous years, IDSS launched large collective efforts to address chal-

lenges posed by Covid and systemic racism. What should the theme of
IDSS’s next large collective effort be?

Table 5.2: Prompts of the survey questions
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5.2.3 Survey Flow

Participants were shown a series of questions in a random order, and could, for each question,

either vote directly or delegate their decision to a trusted peer they could choose from a menu

pre-filled with the community members listed on the website. Voting meant answering an

open question by filling an unconstrained blank box.2

5.2.4 Participation

Out of the 117 participants, a little over a half were students, a fifth were faculty and about

a tenth were either postdoctoral researchers or staff. The participation rate (number of

people from the community that participated) was the highest among staff (82%), followed

by students (62%), postdoctoral researchers (39%) and faculty (26%). See Table 5.1 for

the details. Nineteen participants answered only some of the 11 questions, such that each

question gathered, on average, 105 answers.

The participants included 16% Asian/Pacific Islanders, 2% Blacks or African-Americans

(non-Hispanic), 42% Caucasians/Whites (non-Hispanic), 7% Latinos or Hispanics, 5% Mid-

dle Easterns, 3% self-described and 17% did not answer. Furthermore, there are 32% female,

46% male, 0.08% non-binary, 3% prefer not to say and 17% did not answer.

5.3 Analysis

In this section, we report descriptive delegation metrics observed over the different questions.

We call a delegator someone who delegates and a delegatee someone who receives a delegation.

Gurus are the participants that represent others in the final vote (hence did not delegate

but received delegations). Last, ghosts are group members who were delegated to, but who
2The data was then anonimyzed.
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did not participate in the survey. We denote by [𝑁 ] the set of participants, and by [𝐺] the

set of ghosts.

5.3.1 Methods

For a fixed question 𝑞 and a participant 𝑖, we denote by 𝛿𝑞𝑖 the binary variable that indicates

whether person 𝑖 delegated (𝛿𝑞𝑖 = 1) or not. Further, we denote by 𝑤𝑞
𝑖 the weight of person

𝑖 in question 𝑞. That is, 𝑤𝑞
𝑖 is equal to the number of participants represented by person 𝑖

for a given question. In turn, 𝑤𝑞
𝑖 ∈ [0, 117], where it is 0 is person 𝑖 delegated question 𝑞,

1 if person 𝑖 did not delegate and was not delegated to for question 𝑞 and strictly above 1

otherwise. Further, the edge 𝑒𝑞𝑖,𝑗 takes value 1 if participant 𝑖 delegated to participant 𝑗 on

question 𝑞.

We first show the directed delegation graphs (that is, the collection of edges 𝑒𝑞𝑖,𝑗 corre-

sponding to a specific question 𝑞) for a couple of questions. We next comment on the strongly

connected components of the weighted directed graph that represents the delegation graphs

for all questions combined (a component is strongly connected if every vertex is reachable

from every other vertex ).

Furthermore, we report the number of cycles observed. A cycle of size 𝑙 occurs if a series

of participants {𝑖1, · · · , 𝑖𝑙} are such that 𝑒𝑞𝑖1,𝑖2 = 1, 𝑒𝑞𝑖2,𝑖3 = 1, · · · , 𝑒𝑞𝑖𝑙,𝑖1 = 1. In other words, a

group of 𝑙 participants that delegated to one another constitute a delegation cycle, charac-

terized by its size. Cycles are inherently problematic since no one is effectively representing

the participants of a cycle.

We also report the amount of delegations accumulated by participants (with a particular

interest for the maximum weight 𝑚𝑞 = max𝑖∈[117]𝑤
𝑞
𝑖 ), and the size of the smallest majority

coalition. Let fix a question 𝑞 and order the weights 𝑤𝑞
(𝑖) in decreasing order. Let 𝑛𝑞 =∑︀117

𝑖=1 I[𝑤
𝑞
(𝑖) > 0] be the number of gurus in a graph. Let

∑︀𝑘
𝑖=1𝑤

𝑞
(𝑖) be the weight accumulated
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by the 𝑘 participants with the highest weights. Let 𝑚*
𝑞 be the smallest 𝑘 such that

∑︀𝑘
𝑖=1𝑤

𝑞
(𝑖) >

0.5; we call this the smallest size of a potentially majority coalition (SPMC).

In addition, we discuss the occurrences of ghost, that is, participants 𝑔 ∈ [𝐺] such that

𝑒𝑞𝑖,𝑔 = 1 (or delegatees that did not participate in the survey).

Finally, we dig into delegation frequency across questions (
∑︀117

𝑖=1
𝛿𝑞𝑖
117

) and participants

(
∑︀11

𝑞=1
𝛿𝑞𝑖
11

), and we check whether delegators tend to choose different delegatees across ques-

tions. We also compare the amount of delegations received to that given, where the number

of delegations received by participant 𝑖 is 𝑖𝑛𝑖 =
∑︀11

𝑞=1

∑︀117
𝑗=1 𝑒

𝑞
𝑗,𝑖, and the number of dele-

gations given is 𝑜𝑢𝑡𝑖 =
∑︀11

𝑞=1

∑︀117
𝑗=1 𝑒

𝑞
𝑖,𝑗. Last, we compute participants’ closeness centrality

𝑐𝑖 =
𝑛−1
117−1

𝑛−1∑︀117
𝑗=1 𝑑(𝑗,𝑖)

where 𝑛 − 1 is the number of nodes reachable from 𝑖 and 𝑑(𝑗, 𝑖) is the

shortest-path distance between participants 𝑗 and 𝑖. This weighted version accounts for the

fact that the graph has more than one connected component (note that the edges’ weight

are ignored) [218].

5.3.2 Delegation Graphs

5.3.2.1 Directed Graphs Per Question

We show below delegation graphs for a couple of questions. A direct edge goes from a

delegator to a delegatee. We show in the middle of each plot the number of voters who

delegated to themselves and did not receive any delegations. The larger nodes represent

voters that received delegations and are voting – the gurus. The transparent nodes received

delegations but did not participate – the ghosts. The nodes are colored by position (faculty

are blue, postdocs are green, staff are orange, students are red). On average, liquid democracy

leads to 73 voters (std=10). On average, 56 (std=14) of these voters do not receive any

delegation.

Most delegations involve only two participants (where the guru only represents themselves
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Figure 5.1: Delegation Graphs

Delegation graph for two questions. The color corresponds to the participants’ occupation (faculty
are blue, postdocs are green, staff are orange, students are red). The transparent nodes did not
participate in the survey but received delegations. The large nodes are gurus (those who receive
delegations and vote themselves). The nodes in the middle with a self-edge indicate voters who did
not delegate and did not receive delegations.

and one delegator): we see 57 instances of such delegations out of 113. Next, there are

respectively 15, 7 and 11 instances of delegations involving 3, 4 and 5 participants. In turn,

20% of the delegations involve more than 6 participants; 5% involve strictly more than 10

participants. There are 2 instances of delegation trees with 13 participants, 3 instances

with 14 participants and the largest delegation tree involves 22 participants. We show in

Figure 5.2 a histogram of the weights 𝑤𝑞
𝑖 carried by gurus across all the delegation graphs.
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Figure 5.2: Delegation Weights 𝑤𝑞
𝑖

Histogram of delegations across all questions. The blue histogram excludes the ghosts and the red
one includes them.

5.3.2.2 Weighted Directed Graphs Across All Questions

Across all questions, 60 participants never received a single delegation across questions, and

11 among those never delegated either. Further, 16 participants received 1 direct delegation,

13 received 2, 4 received 3, 5 received 3, 3 received 5, and 16 received more than 6. One

participant was delegated to 41 times across all questions.

We identify 96 strongly connected components in the weighted directed graph, 94 of which

are of size 1. There is one component of size 2, and the last one is of size 21. This means that,

accounting for all delegations across all questions, and picking a random participant in the

strongly connected component, there always exists a directed path to any other participant

for the component. However, the weights accumulated by those in the strongly connected

components account only for 14% of the total delegation weights: the other participants do

not seem likely to delegate into the component.
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5.3.3 Cycles

Across the 11 questions, we found a total of 3 two-cycle. That is, it occurred three times

that two participants delegated to each other, with 𝑖1, 𝑖2 and 𝑒𝑞𝑖1,𝑖2 = 1, 𝑒𝑞𝑖2,𝑖1 = 1.

5.3.4 Concentration of power and Majoritarian Coalitions

The maximum number of votes aggregated by one single person is 22. We show in Figure 5.3

a box plot of the maximum weights, 𝑚𝑞 across the different questions. The median maximun

weight across all questions is 8.
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Figure 5.3: Box plot with the maximum number of delegations received across all 11 ques-
tions.

Next, we show in Figure 5.4 the fraction of votes gathered by the smallest coalition with

the highest total weight for each question. Each color represents a question, and each point

(𝑥, 𝑦) represent the proportion of weights 𝑦 =
∑︀𝑥

𝑖=1 𝑤
𝑞
(𝑖) that the 𝑥 participants with the

largest weight accumulated.

Further, we report in Figure 5.5 a box plot of 𝑚*
𝑞, the smallest numbers of gurus needed

such that they control half of the votes. The median SPMC is 13. For question 9, the majority

of the votes was controlled by just two participants. On the contrary, 30 participants were
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Figure 5.4: Fraction of votes gathered by the smallest coalition with the highest total weight
per question.

needed to accumulate a majority of the votes in Question 5.

0

Group Size

5

10

15

20

25

30

M
in

im
um

 N
um

be
rs

 
 o

f G
ur

us
 th

at
 G

at
he

re
d 

 H
al

f o
f t

he
 V

ot
es

Minimal Majoritarian Committee Box Plot

Figure 5.5: Box plot of the SPMC (𝑚*
𝑞) across all questions.

5.3.5 Ghosts

This experiment showed little signs of cyclical delegations and concentration of power. How-

ever, we found that a lot of participants who received delegations did not participate – we

call those persons ghosts. Overall, 39 persons that received a delegation did not participate,

such that 80 delegations lead nowhere. On average, 6.8 persons per question received delega-

tions without participating (std= 3.5). Based on our results, this is an important practical
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aspect of liquid democracy that requires further attention when participation is voluntary.

5.4 Delegation Behaviors

This section studies characteristics of delegation behaviors.

5.4.1 How often do people delegate?

Participants had up to 11 opportunities to delegate3. We measure the delegation rate as the

frequency at which participants delegate (number of delegations divided by the number of

questions answered).

Figure 5.6 shows a histogram for the
∑︀11

𝑞=1
𝛿𝑞𝑖
11
.
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Figure 5.6: Proportion of people that delegate at certain delegation rates.

We see that many participants never delegated, and we observe that participants are less

likely to delegate often than not.
3Most participants answered all 11 questions, but 19 participants answered only a subset of the 11

questions. Their delegation frequency is computed as a function of the number of questions they answered.
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5.4.2 Are delegation frequencies different for different questions?

Delegation rates were significantly different across different questions (a chi-square test of

independence results in 𝑡 = 74.9198 with a p-value less than 10−5.). Figure 5.7 shows dele-

gation frequencies (with 95% confidence intervals) across the different questions,
∑︀117

𝑖=1
𝛿𝑞𝑖
117

.
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Figure 5.7: Delegation rates per question. The red bars represents yes/no questions.

Since Campbell et al. [41] reports that propensity to delegate play an important role in

liquid democracy’s performance in certain contexts, it may be interesting to further investi-

gate whether there exists systematic heterogeneity in delegation behaviors for different kinds

of problems.

5.4.3 Who do delegators delegate to?

Half of the participants that delegated always delegated to someone different. If we filter

out participants who delegated only once, those who always delegate to different persons

amount of 35% of the total. In Figure 5.8, we see in the square (𝑥, 𝑦) the number of times
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that someone who delegated 𝑥 times delegated to 𝑦 different delegatee. The lower diagonal is

necessarily empty and, interestingly, we see that the terms around the diagonal are typically

the highest. This indicates that participants tend to choose different representatives for

different questions, so that the delegation choices seem specific to the issue at stake.
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Figure 5.8: Heatmap of the choices of unique delegatees as a function of the number of
delegations.

5.4.4 More on delegation behaviors

Last, we compare the number of delegations received 𝑖𝑛𝑖 to that given 𝑜𝑢𝑡𝑖 in Figure 5.9.

We see that many of those who received many delegations tend to also delegate often.

Further, performing a rank correlation coefficient test, we notice that those that received

more delegations also tend to have a higher closeness centrality (Kendall Tau test gives

𝜏 = 0.55, p-value = 10−11, see Section 4.3.4.3). This indicates that we are unlikely to see

many participants that receive many delegations and never delegates (in which case, no one

would be reachable from these participants and the closeness centrality would be equal to
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0). In turn, it seems that those who received delegations may act as connectors through

the transitivty of delegations. If some participants gather more delegations due to their

prominence in the community, it seems qualitatively that they are also somehow likely to

delegate in turn to others community members. On the one hand, this may be a positive

aspect of liquid democracy if the gurus identified through transitivity have some domain-

knowledge regarding the issue at stake. On the other hand, this also raises questions in

terms of the legitimacy of the gurus selected transitively.
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Figure 5.9: Heatmap of the choices of number of delegations received as a function of the
number of delegations given.

5.5 Discussion

While many warned against liquid democracy leading to cycles and concentration of power,

we find little signs that either are prevalent trends in these experiments. However, we observe

that multiple members who received delegations did not participate, leading to an important

practical hurtle: how should one, in real-world scenarios, handle delegations that are given

to a guru that does not participate in decision-making?
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Further, our experiments indicate that most participants prefer voting themselves than

delegating their votes, and that delegation frequencies vary across questions. Liquid democ-

racy was thought of as a per-issue voting scheme, where participants can delegate their

power to issue-specific representatives and, interestingly, we observe that delegations tend

to be given to distinct representatives across questions. Participant seem to appeal to the

per-issue feature of liquid democracy.

While this chapter simply presents descriptive aspects of the experiment, it raises ques-

tions in terms of the behavioral and cognitive aspects of individual delegations (Why do

participants delegate?), on the delegation trends for different community (How do received

delegations travel transitively? How diverse and representative are the gurus in comparison

to representatives selected to other processes?), and on the legitimacy of the selected assem-

bly (How legitimate are representatives selected by a few that amass large weights through

the transitivity of the delegations?).
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Chapter 6

How to Open Democratic

Representation to the Future?

Abstract

In recent years, various innovations aimed at counteracting perceived democratic decline and

presentism have emerged. One primary concern is the issue of inadequate representation in

parliaments, which has prompted the development of various proposals for reforming the

selection mechanisms of parliamentarians. In this context, lottocracy (selection of repre-

sentatives at random) and proxy democracy (selection models based on self-selection and

flexible nominations that determine the relative influence of representatives) are candidates

as selection rules to open democratic representation. Herein, I examine the normative and

contextual trade-offs underpinning lottocracy and proxy democracy. While both systems

outperform electoral alternatives on the dimensions under study, they induce tensions often

overlooked. Nonetheless, clarifying the normative compromises is crucial to address the chal-

lenges facing democratic systems and inform the deployment of the future of representative

democracy.
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6.1 Introduction

Over the past decades, there have been trends of discontent with democracy and a per-

ceived decline in trust in representative institutions. In 2022, Europeans had an average

trust in national governments of 3.6 on a 10-point scale and, in the European Union, of 4.4

(against 4.7 and 4.6, respectively, in 2020) according to Ahrendt et al. [3]. Representative

democracies are said to be afflicted bypresentism,a blind spot for future-oriented policies and

long-term risks [134, 155], blamed on short-term incentives of institutions with a tendency

to misalign lawmaking with citizens’ perspectives [122, 223]. The weakening of represen-

tative institutions’ trust and performance further correlates with a rise of authoritarianism

that threatens established representative democracies: as a second-order problem, these in-

stitutions’ future itself is at risk. Reinforcing democratic institutions to better align with

democratic values becomes a necessary investment in future generations’ future. Optimisti-

cally, the concept of representative democracy remains popular — a survey found that a

median of 78% of participants worldwide believe it to be a good way to govern [237]. In

turn, proposals flourish to reform questioned representative institutions and increase their

responsiveness. Some of these proposals involve enlarging the size of representative bodies,

creating committees for the future within parliamentary chambers, and adopting different

voting systems, such as ranked-choice voting, approval voting, or majority judgment (see

respectively Allen et al. [4], Balinski and Laraki [15], Brams and Fishburn [34], Hernández

[116], Koskimaa and Raunio [138].

6.1.1 Problem Statement

This chapter builds on the idea that engaging citizens in the political process could reduce

blind-spots in risk management and limit the capture of decision-making processes through
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short-term incentives or special interests ("the public itself needs to be engaged [. . . ] to

ensure long-term public interests are protected" [p.129, 31]), and asks: how should ordinary

citizens be engaged? In that vein, scholars have urged us to acknowledge representative

democracies’ oligarchic drifts and reconsider fundamental democratic principles underpinning

current processes (see Van Reybrouck [231] and Guerrero [p.135, , 107]. Notably, Hélène

Landemore coined open democracy, a paradigm founded on widespread participation in

lawmaking, institutionalised deliberation, and accessible representation. [p.128-129, 145] She

makes the "case for a new form of democratic representation in which elected officials are

replaced with randomly selected ones", referred to as lottocracy [p.1061, 146]. Others echo

that a lottocratic chamber could be tasked with [. . . ] legislating for the long term." [p.337,

217]

This essay engages with selection mechanisms for representative democracy that attempt

to broaden institutions’ perspectives. While democracies historically tend to try out novel

procedures that fit a particular normative ideal and evaluate other externalities after the

fact, this essay benchmarks two selection procedures, lottocracy and proxy democracy, in

an attempt to highlight the normative and contingent trade-offs. By understanding how

different selection rules express democratic principles and respond to contexts, we shift from

seeking an ultimate imperfect solution to debating how to prioritise competing objectives.

In turn, citizens could make informed decisions about the values under which they insti-

tutionally live and shape the future of epistemically and procedurally responsible forms of

representation that mitigate long-term risks and survive current turmoil.

6.1.2 Contributions

The contributions of this chapter are threefold. First, I consider the ecology of selection rules

for representative assemblies (such as parliamentary chambers), introducing proxy democ-
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racy as a selection rule for representation in open democracies and comparing it to lottocracy.

In proxy democracy, citizens can periodically choose to be in the legislature. Those who do

not self-select flexibly nominate the self-selected citizen(s) they want to be represented by,

and a legislator’s vote is weighted by the number of nominations received. Second, it investi-

gates how Landemore’s accounts of democratic representation and legitimate representation

are realised under lottocracy and proxy democracy, drawing on political and social choice

theories to integrate these traditionally separate fields of study. While proxy democracy

opens representative institutions reinforcing the current understanding of representative val-

ues, lottocracy cannot be fully justified in that context; this essay builds on recent political

theory to characterise appropriate novel grasps on the concept of representation[57, 108, 145].

Third, it identifies a gap in the normative theory of lottocracy that raises a series of questions.

Biased self-selection may impair lottocracy’s promise to promote descriptive representation:

should self-selection be handled by mandates, quotas, or ignored? In the first case, is there

a moral duty to serve as a representative or a substantive argument that those in power

should not seek it? In the second case, which fairness or equity standards should replace the

equality principle? In the third case, why should equality be preferred over diversity?

In the following sections, I review the literature on democratic representation and se-

lection models. I examine open representation through the lens of lottocracy and proxy

democracy and compare these selection mechanisms’ normative foundations.

6.1.3 Related Work

Political representation (through which certain individuals stand in for a group to perform

specific functions on behalf of that group, [200]) has been the subject of much controversy.

While some argued that democratic representation was a "defective substitute for direct

democracy" in which constituents abdicated self-government, others believed that represen-
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tation allowed the many to select the competent few through periodic elections[p.515, 164].1

These theories of representation have primarily focused on electoral democracies charac-

terised by exclusive competitions for limited seats. Once acclaimed as an ultimate form of

democratic representation, elections are increasingly perceived as founded on elitist princi-

ples, decried for their oligarchic drift and remoteness, and criticised for experiencing high

distrust and failing to focus on long-term risks.2.

Looking back at John Stuart Mill’s work, representation should provide all an equal op-

portunity to "take an actual part in the government by the personal discharge of some public

function."[p.39, 171] For Urbinati and Warren, it also plays a crucial role in "unif[ying] and

connect[ing] the plural forms of association within civil society, in part by projecting the hori-

zons of citizens beyond their immediate attachments, and in part by provoking citizens to

reflect on future perspectives and conflicts in the process of devising national politics."[p.391,

227] Representation further induces a relationship between the represented and the represen-

tatives, the nature of which has been extensively debated. The traditional view opposed the

concept of delegate (mandated to fulfil the constituents’ will) to that of trustee (trusted to

exercise independent judgment), relying on the idea that constituents track and sanction the

representatives’ performance after the fact. However, Jane Mansbridge argued that sanction

was peripheral to representation, proposing a selection model in which citizens screen can-

didates before they take office to choose self-motivated honest representatives with aligned

preferences.[p.621, 166]

If political representation can be intrinsically democratic, instrumentally beneficial and

understandable through a selection rationale, it is realised through selection processes with

normative and empirical implications.3 Investigating novel schemes, scholars have argued
1See also historical work by Rosanvallon [207].
2See the Triumph of Elections in Manin [chapt. 2, 161] On the withering of electoral democracies, see

respectively Ahrendt et al. [3], Lessig [148], Thompson [223], Urbinati and Warren [227], Wike et al. [237]
3On normative considerations, see Landa and Pevnick [142]. See Lijphart [150] for empirical ones.
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for increasing "degrees of openness of the sites of power to ordinary citizens" to promote a

more accurate representation of the people and their interests.[p.134, 145] To reason around

the justification of delegating power in open representative democracies, Landemore distin-

guishes between democratic representatives ("who [have] accessed the position of represen-

tative through a selection process characterized by inclusiveness and equality"), legitimate

representatives ("who [have] been properly authorized to act as a representative") and good

representatives ("that serves well the interests of the represented")[p.87, 145]. Further, she

notes that "if the democratic principles of inclusiveness and equality are perfectly realised,

then we should see a representative body that is statistically identical with the demos,"[p.89,

145] deriving descriptive representation from democratic representation. Descriptive repre-

sentation (the idea that a legislature "should be an exact portrait, in miniature, of the people

at large")[2] has a long instrumental history of enhancing democratic processes[p.628, 162].4

It "speaks to the level at which those occupying positions of power reflect the population they

represent" and aims to reflect the diversity of the constituents’ experiences and perspectives,

enhance long-term views and bring political power closer to the people.

Scholars have argued that contingent political risks associated with electoral designs,

contextual political capture by special interests, and the complexity of the issues at stake

were standing in the way of representative institutions delivering substantive outcomes to

improve present and future citizens’ life.[122] In contrast, cognitive diversity, inherent to

descriptive assemblies, was reported to enhance the epistemic performance of a crowd when

facing complex problems over deliberations [144] as "the range of arguments considered will

be broader."[p.353, 217] Next, ordinary citizens in the right institutional design are said to

be "more likely to feel accountable to future generations [than] to [. . . ] electors (and in some

cases to the donors who finance the elections)".5

4For a conceptual assessment of different views on representation, see Pitkin [188].
5Sintomer [p.353, 217] specifically writes this in the context of sortition chambers.
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This essay builds on the assumption that engaging ordinary citizens will foster substan-

tive outcomes (good representation) and engages with the procedural justification to (i)

understand how lottocracy and proxy democracy respond to Landemore’s interplay between

democratic and descriptive representations and (ii) clarify how both selection rules under-

stand legitimate representation.

6.1.3.1 Lottocracy

A lottocratic assembly is composed of congress members drawn randomly to participate in

the political office that rotates over fixed periods, typically informed by appointed panels of

experts. Lottocracy was famously used in Ancient Greece, re-introduced by Robert Dahl as

mini-populous and suggested as a complementary form of representation.6 They typically

come with a side informational process through which the randomly selected citizens gather

knowledge about the issues at stake. Recently, proposals to replace congresses with random

chambers flourished and are contested.7 Lottocracy is often defended for treating all more

equally and being more inclusive, representative, and impartial than its electoral counterpart.

Lottocratic assemblies have been composed worldwide to work on topics such as climate

change, constitution drafting, same-sex marriage, etc.[p.257, 108]

6.1.3.2 Proxy Democracy

Proxy democracy is an alternative model in which citizens either self-select to be represen-

tatives or flexibly nominate self-selected citizen(s) through frequent nomination processes.8

6See respectively Barker [17], Dahl [63], Fung [91].
7On proposals, see for instance Callenbach et al. [40], Gastil and Wright [95], O’Leary [183]. On concerns,

see Landa and Pevnick [143], Umbers [225].
8Proxy democracy generalises proxy voting [p.107, 174] and liquid democracy. Liquid democracy is an

(i) area-specific (ii) transitive proxy voting with (iii) instant recall that has been used sporadically around
the world (see Valsangiacomo [230]). I only focus on the potential of fractional transitive proxy voting
as an alternative mechanism for parliamentary selection, all other things being equal. In particular, I do
not consider instant recall in proxy democracy for its instability but rely on a rotative system such that
nominations are held periodically. For an investigation of these concepts as representative processes, see
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In turn, representatives have a weight equal to the number of citizens they represent, which

scales their votes in congress. Nominations are fractional to allow the expression of plural

preferences and choosing different representatives for different issues.9 Each citizen would

nominate a set of representatives, specifying the capacity in which each representative is

chosen (a specialist or a generalist). While all representatives would participate in all votes,

dedicated democratically selected per-issue committees would drive in-depth deliberations

before voting.10 Variations of this system have been used in political and corporate settings,

but proxy democracy remains a fresh proposal with far fewer test cases than lottocratic

alternatives.[p.71, 230]

Lottocracy and proxy democracy are committed to opening the set of potential repre-

sentatives to virtually everyone , adding "to the mix of a new set of representatives, dif-

ferent from those we elect."[p.352, 217] While lottocracy works with pre-defined size and

no direct intervention of the represented, proxy democracy theoretically admits unbounded

parliament sizes and is realised through flexible nominations of those represented. Further,

numerous lottocratic proposals suggest relying upon single-issue bodies connected through

supra-chambers and trained independently. In proxy democracy, such single-issue deliber-

ative pools are endogenously constituted and included in the broader institution to handle

trans-issue consistency.

Valsangiacomo [229].
9The specific mechanics of fractional voting may vary, and quadratic voting may be better suited to

prevent strategic behaviour while still allowing expressive nominations, as in Weyl [234].
10The approval-based multi-winner literature proposes ways to ensure a proportional representation of

perspectives, see, Aziz et al. [e.g., 14]
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6.2 Democratic, Descriptive and Legitimate Representa-

tion in Lottocracy and Proxy Democracy

In the remaining essay, I shall compare the two forms of selection models on similar grounds.

First, I focus on Landemore’s account of democratic representation and its interplay with

descriptive representation.[p.81, 145] Second, I discuss how legitimate representation is me-

chanically derived in both models by those not included in the parliament.

6.2.1 On democratic and descriptive representation

Landemore suggests evaluating, in the non-electoral world "the democratic character of a

representative assembly [. . . ] in terms of the degree to which access to that assembly [. . . ] is

inclusive and equal (or fair)”, in what is reminiscent of Robert A. Dahl’s criteria for adequate

participation and equality in the decisive stage in electoral democracy (see Landemore [p.81-

82, 145] and Dahl [p.109, 61]). She further asserts that perfectly democratic representation

leads to statistically descriptive representation.[144] Let us observe how the equation coupling

inclusive participation and equality to descriptive representation plays out in lottocracy and

proxy democracy.

6.2.1.1 Inclusive participation

In electoral democracy, all overaged citizens participate mainly through voting rights that

vest peripheral and indirect access to power through episodical polls. In contrast, democratic

representation requires that all could virtually participate substantively in policymaking

through low entrance barriers and the assurance that they could reasonably have been in-

cluded for any given term. Along these lines, lottocracy and proxy democracy virtually allow
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any citizen to become representative, effectively removing entrance barriers to congress.11

Next, lottocratic active participation is over one’s lifetime (I may be selected to partici-

pate in policy-making throughout my life) and happens intermittently (when I am selected).

In contrast, citizens in proxy democracy are actively included continuously in policymaking

through their ability to self-select or nominate representatives per issue.12 Unlike in lot-

tocracy, citizens need not be willing to sit in congress; they can freely self-select (allowing

direct inclusion) or exert their political power over influencing the legislature’s composition

(allowing indirect inclusion). It is unclear how many people would self-select to sit in the

representative body in proxy democracy. While small congresses would include all continu-

ously through direct and indirect participation, mechanisms would be necessary to mitigate

massive assemblies — and filtering representatives could create new exclusion patterns.

Landemore notes that "if the number of seats and the frequency of rotation are insufficient

for everyone to plausible expect to rule someday, then the comparative democratic advantage

of lotteries over elections becomes quite thin."[p.91, 145] Unfortunately, the chance of being

included in one’s lifetime in modern examples is extremely small. In the Belgium case used

by Landemore, 29 seats are filled randomly from a pool of 76, 000 citizens, and the rotation

occurs every year and a half. The probability of being selected in a lifetime is less than

2.3%.13 For a population of ten million and a congress of ten thousand members chosen
11Neither lotocracy without mandates nor proxy democracy proposes a framework to include those who

do not engage in the political processes, or biased self-selection patterns based on, e.g., gender, which are,
however, other crucial issues for open democracy.

12Unlike electoral democracy where entrance barriers to participating directly are high, proxy democ-
racy allows every citizen to choose whether they want to participate directly (self-selecting) or indirectly
(nominating) in policymaking.

13The probability of a citizen being chosen at least once in a lottocratic assembly is one minus the prob-
ability of never being chosen. Assuming that only four over five citizens are old enough to be selected and
that the events of being selected for each term are independent, the probability of never being chosen is
(1 − 29/(0.8 * 76000))𝑚, where m is the number of times one can be selected. We generously assume that
a citizen can be chosen once every one year and a half over 70 years so that 𝑚 = 70/1.5. This probability
remains comparable if we take that a citizen may be selected only once in their lifetime and further shrinks if
we include population dynamics. Landemore [p.91, 145] reports a probability of being chosen in one’s lifetime
of 67% but, to the best of my understanding, the assembly would need to be changed every ten days to reach
this probability. Other sources [45] indicate that up to 174 citizens can be sorted through a combination of

198



yearly, the probability of any individual being selected once in a lifetime would not reach

7%. Guerrero finds that, even in a fully lottocratic American society where every political

office at the local, state and national level is held randomly, the probability of being selected

in one’s lifetime in any of those is about 4% according to Guerrero [p.246, 108].14 As such,

only a small number of citizens would have the opportunity to participate in the policymaking

process, even with frequent rotations and large parliaments in large states. This does not

mean, however, that lottocracy is not inclusive. It does not favour active inclusion in the

process but exemplifies passive inclusion of a broad range of perspectives: most individuals

would have a high chance for their perspective and experience to matter at some point.

Passive inclusiveness is not guaranteed in a majoritarian electoral framework, where some

perspectives may never make it to a representative seat. It is also likely to be more prevalent

in lottocracy than in proxy democracy (where all perspectives can be included, but some,

being more weighted than others, could control voting outcomes).

In summary, lottocracy and proxy democracy virtually remove entrance barriers to the

site of power. They differ in that active inclusiveness is intermittent through direct partic-

ipation in the former and continuous through direct and indirect involvement in the latter.

Yet, passive inclusion in lottocracy also allows citizens’ perspectives to be represented and

heard. Alternatively, self-selection and nominations in proxy democracy connect all to the

site of power and allow citizens’ multi-faceted interests to be represented, but self-selection

and vote weighting may lead to some views struggling to be represented ans large congresses

that would necessitate limiting mechanisms.

a permanent assembly with 24 members sorted every 18 months and three potential assemblies with 25 to
50 citizens called at most three times a year. Then, the probability is upper bounded by 18% in the most
generous scenario.

14Selecting at random all elected officials would still induce imbalance in the stakes each individual has a
chance to participate in.
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6.2.1.2 Equal access, fair access or statistical representation

Another critical aspect of democratic representation is equal opportunity to share claims in

exercising political power so that "the possibilities for political participation [are] equally

distributed"[p.75, 103] among the citizenry.[47, 62] In electoral democracies, guardrails bias

who can run for office, undermining political equality and preventing parliaments from being

descriptively representative. Open democrats strive for equal access to substantive power

among citizens, but this is not a sufficient condition to obtain diverse assemblies. Citizens’

ability to choose whether to become representatives can prevent inclusiveness and equality

from resulting in diversity: those who self-select may not be statistically representatives of

all.15

In an idealised lottocracy, a parliament of size k in a citizenry of size n is constituted by

randomly sampling citizens with probability k/n. In turn, all citizens have the same chance

to sit in congress, control the agenda, deliberate, and vote. Also, groups constituting the

citizenry have a proportional chance of being represented. This idealised view condones the

citizens’ right (given in current lottocratic implementations) to refuse the invitation to sit in

parliament. Because active inclusion in lottocracy is understood as taking part directly in

the policymaking process, it imposes a high participation cost that only some may tolerate.

In sorted assemblies with low commitment, few citizens opt-in to serve in the short-lived

sorted groups: "typically, only between 2 and 5% of citizens are willing to participate in the

panel when contacted."Flanigan et al. [83]

Those who self-select "exhibit self-selection bias, i.e., they are not representative of the

population, but rather skew toward certain groups with certain features,"[83] hurting a pri-

ori the chances for each group to be proportionally represented. Some argue one should

simply limit the causes of abstention; others insist on limiting its effects, de-biasing it to
15This was also observed in Scheufele [212] and Landa and Pevnick [143].
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"ensure that the assembly’s eventual membership [is] representative of the population."[50]

In turn, external checks such as quotas may enforce that the sorted assembly includes a cer-

tain number of people with specific characteristics. Practitioners prescribe first sampling a

large pool of people and then using quotas to stratify the final assembly of size k, de-biasing

those who accepted to participate in the larger pool through algorithmic procedures.[p.548,

85] Such stratified sampling is deemed necessary to "increase [sorted assemblies’] represen-

tativeness."[p.340, 217] While quotas may fail to account for "constituents’ many-sided and

cross-cutting interest" and be essentializing,"[p.30, 163] such "representative arrangements"

are deemed valid "in the context of historical patterns of domination and subordination."

They protect an ex-ante understanding of diversity (defined a priori) and could constitute

modern guardrails to support democratic ideal. The explicit design of the quotas shall re-

quire meticulous attention to avoid being politicised (for instance, minimum thresholds over

bi-partisan categories could promote mild guardrails).

Further, while equal chance to access power is unattainable in such scenarios, computer

scientists have developed algorithms that enforce pre-defined quotas while treating partic-

ipants fairly.[74] Some maximise the lowest probability of being selected; others sort the

larger assembly with different probabilities that depend on citizens’ attributes (such as age,

gender, and education) to account for different likelihoods of opting in.[83, 85] Voters are

not treated equally, as one’s chance to be selected depends on the self-section pattern of the

rest of the group, but these elegant approaches achieve procedures that guarantee descriptive

representation while promoting fair access to power.

In all, attention must be devoted to the implications of self-selection in lottocracy in

different contexts. Should participating be mandatory — if so, on which grounds? Should

random sampling be procedurally sufficient to suffer the cost of potentially skewed repre-

sentation? Or, could stratified sampling be the best option available to guarantee equitable

representation — if so, what should be the fairness principles used instead of the equal-
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ity principle, and how should such guardrails be normatively, empirically, and politically

justified?

In contrast, proxy democracy intends to enforce equal opportunity to become a represen-

tative among those who self-select. Each citizen may deal with their voting power equally

through nomination, provided that opening the set of representatives to virtually everyone

will supply diverse choices. Valsangiacomo notes that, unlike in electoral democracy, proxies

compete for political and legislative influence and not for seats, arguing this fundamental

shift will "reduce the risk of strategic voting on the part of the voters, as well as the risk

of anticipatory strategies on the part of the parties."[p.7, 229] Further, marginalised voices

that struggle to gather the support needed to be heard in electoral setups would be included

through self-selection in parliament, automatically taking a seat in deliberation phases.

In contrast, proxy democracy does not induce equality of influence in the decisions taken

in parliament, as some representatives will carry more nominations than others. Closely

related to that point, proxy democracy does not enforce a preconceived notion of diversity.

Self-selection and flexible nominations are intended to couple equality of opportunities to

become a representative with a diverse representation of interests. Diversity is understood

as ex-post, resulting from popular nominations.16 Philosophers have argued that there were

reasons to believe that coupling self-selection with flexible nominations would lead to de-

scriptive and "strongly" diverse parliaments.[26, 230] However, they do not provide ex-ante

safeguards against popular nominations. In particular, proxy democracy may drift to nomi-

nations captured by coalition builders, charismatic leaders or special interests, as in electoral

democracies, that could control enough voting weight to influence legislative outcomes.17

While counter-popular guardrails could be deployed to prevent these cases, a context prone
16Proxy democracy is not per se incompatible with ex-ante diversity — external checks could randomly

sample given features from a self-selected group.
17In the context of liquid democracy, an experiment documented extreme concentration of power, see

Becker [19] and Guerrero [p.106, 108].
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to political capture may find its way to game the system and reduce equality to access

effective power.[102, 129]

In sum, self-selection creates tension between equality and diversity. Lottocracy may

solve this tension by enforcing an ex-ante account of diversity through fair stratified sam-

pling, arguing for a mandatory civic duty to serve when selected, or trading diversity for

equal chances of being sorted. On the contrary, proxy democracy lets citizens who did

not self-select balance out biases induced by self-selection. Proxy democrats admit an ex-

post account of diversity revealed through the nominations and, in turn, not protected.

Simultaneously, proxy voting does not guarantee equality in the representatives’ chances to

influence outcomes, and this may be explored to capture political processes. External checks

to guardrail endogenous behaviours might be necessary (to promote diversity against self-

selection or prevent concentration of power against nominations), and they pose a crucial

challenge to open democracy, similar to that faced by electoral democrats two and a half

centuries ago: when and why are guardrails (such as mandates, quotas, nominations cap)

justifiable?

6.2.2 On legitimate representation

Those not directly included in parliaments need to authorise the representatives, consenting

to their binding power. Authorisation constitutes a necessary condition for democratic legit-

imacy that pretends to accommodate individuals with an irreconcilable plurality of opinions

to comply with a non-consensual decision and grounds what Landemore calls legitimate rep-

resentation. Representatives in electoral democracy are authorised because they are chosen

by a sufficiently large portion of the population and held accountable through period elec-

tions. However, those who vote for the election’s winner authorise with greater intensity

than those who do not, creating unbalanced authorisation theories in electoral democracies.
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Authorisation in open democratic selection rules is deeply rooted in a procedural argu-

ment according to which citizens are all included and treated equally (to the extent possible),

leading to an assembly whose diversity has instrumental credentials. Accordingly, citizens of

open democracy are expected to authorise their parliament for its intrinsic and instrumental

credentials. Intrinsically, citizens oscillate between "ruling and being ruled" by the sheer

inclusiveness of the parliament to all.[p.117, 17] Instrumentally, the representative body is

constituted by cognitive diversity that shall lead to better outcomes, either more sensitive

to the plurality of opinion or epistemically dominant.[145]

The lottocratic assembly is selected by a voter-free process, primarily authorised via the

procedural argument outlined above without a principal-agent relationship. Citizens do not

exercise power when selecting a representative but consent to the power of a justly composed

body and authorise it as a whole because it tends towards a statistical truth. Random

assemblies are accompanied by knowledge-gathering and deliberative processes that may

enhance lawmaking’s outcome. This instrumental justification is sensitive to the assemblies’

cognitive diversity.[145] Hence, mandatory participation or quotas may be necessary pre-

conditions to outcome-oriented authorisation in lottocracy.

Beyond authorising a fair procedure, citizens in proxy democracy endorse "self-motivated

agent[s] who can pursue their interests flexibly, adaptively and with internal commitment"[p.623,

162] and be political leaders during their term.18 Unlike in electoral democracies, citizens

who choose to be nominators have access to diverse and per-issue alternatives. Their weight

in the decision is further effectively carried by their representative(s) so that authorisation

is personalised through the indirect nature of inclusiveness. Further, proxy democracy pur-

poses to rely on the concept of collective intelligence applied to the selection of topically

competent peers to enhance lawmaking’s outcome.19 Proxies are expected to be authorised
18See Beerbohm [20] for a discussion about the compatibility between democracy and leadership.
19Our previous chapets found theoretically and empirically that, in well-connected and apolitical set-ups

and in the context of liquid democracy, transitive nominations were reaching per-issue competent represen-
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because they are perceived as "an especially competent set of individuals" selected through

a democratic process.[142] This normative argument, however, shall carefully be confronted

with the context in which proxy democracy may be deployed to look for external forces that

may distort the nomination processes.

In lottocracy, those not directly included authorise a group that approaches a statistical

truth. Lottocracy induces a discontinuity in the traditional theory of consent in represen-

tative democracy, basing authorisation on a voter-free procedural argument. Further, while

non-random democratic processes may be theoretically proposed to achieve optimal epis-

temic performance[142], deliberative lottocracy is said to guarantee epistemically responsi-

ble assemblies better suited to resist risks of political capture. In contrast, proxy democracy

reinforces how consent is understood in electoral theories: individual authorisation results

from a free choice to nominate and is translated into a citizen’s weight effectively repre-

sented in parliament. Relying on voters’ collective intelligence, proxy democracy may fairly

bring forth competent lawmakers, but nomination processes may be captured and risk being

biased.

6.3 Discussion

Representation in democracy is due for an upgrade. The exact shape this update may take

has yet to be made clear. In an open democracy, lawmakers could be selected through random

draws of citizens or self-selected representatives weighted by popular votes. Normatively,

both proposals promise to lead to more inclusive, egalitarian, and diverse representative

bodies than current electoral systems. However, they lead to different readings of these

principles. Proxy democracy lets citizens choose whether to directly or indirectly participate

in the political craft and strengthens individualised authorisation of theoretically competent

tatives, see Chapters 3 and 4.
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representatives. It reveals an ex-post diversity through endogenous nominations but may

suffer from powerful forces capturing unbalanced influence. In contrast, lottocracy promotes

rare active inclusion but broad passive inclusion of voters’ various perspectives. Different

handlings of biased self-selection appeal to mandatory participation or quotas safeguarding

ex-ante diversity. Lottocratic authorisation relies on a radically new account of voter-free

procedures. Since there may not exist an ultimate form of representation, choices about the

future of democracies shall be driven by the principles we ought to prioritise and the contexts

from which we start. This essay hopefully clarifies how lottocracy and proxy democracy

respond to values and contingency.

Practically, handling large parliaments may become necessary to foster inclusive repre-

sentation in both lottocracy and proxy democracy.20 Operating with large congresses sounds

preposterous — representation was invented to accommodate large population sizes and pre-

vent chaotic debates. However, if deliberation is at its best in small assemblies, meaningful

inclusiveness mechanically requires larger ones. To allow more citizens to be included in

open democratic representation, specific attention shall be dedicated to rethinking lawmak-

ing protocols so that they accommodate large groups and are compatible with non-political

commitments citizens may have while serving as representatives. For instance, congresses

could work by decoupling deliberation phases from voting phases in parliaments. Small,

punctual, per-issue specialised committees geographically distributed would gather informa-

tion, hear experts, deliberate, and draft laws before all representatives would cast a vote at

the time of the decision.

Alternatively, to limit congress size while achieving a flexible understanding of inclu-

siveness and diversity and minimising the influence of charm in the nomination process,

one could consider using mixed selection rules that incorporate elements of both lottocracy
20American founding fathers advocated for maintaining one representative for every thirty-six thousand

citizens [112]. Similarly, proposals are made to enlarge the U.S. Congress, see Allen et al. [4].
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and proxy democracy.[p.348, 217] For instance, citizens could be asked to announce their

availability to serve in the parliament’s next term or nominate a fellow citizen to represent

them. Representatives would then be drawn randomly among self-selected candidates, with

a probability of being chosen based on the number of nominations received. This approach

intends to prevent excessive self-selection biases or incentives for charismatic capture while

promoting authorisation through a procedure in which all citizens participate.

This chapter explores alternatives to mitigate first and second-order long-term risks asso-

ciated with representative democracy from democratic, legitimate and descriptive perspec-

tives. Further normative questions (regarding the rules’ symbolic and substantive impli-

cations) and practical issues (about representatives’ compensations, the trustworthiness of

digital platforms used for sorting citizens or counting representative weights, etc.), let for

future research, still stand in the way of a panoramic view of representative democracy’s

future.
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Chapter 7

An Axiomatic View for Representative

Democracy

Research is formalized curiosity. It is poking and prying with a purpose.

Zora Neale Hurston

Abstract

As the world’s democratic institutions are challenged by dissatisfied citizens, political scien-

tists and also computer scientists have proposed and analyzed various (innovative) methods

to select representative bodies, a crucial task in every democracy. However, a unified frame-

work to analyze and compare different selection mechanisms is missing, resulting in very few

comparative works. To address this gap, we advocate employing concepts and tools from

computational social choice in order to devise a model in which different selection mech-

anisms can be formalized. Such a model would allow for desirable representation axioms

to be conceptualized and evaluated. We make the first step in this direction by proposing

a unifying mathematical formulation of different selection mechanisms as well as various
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social-choice-inspired axioms such as proportionality and monotonicity.

7.1 Introduction

It is often argued that representative democracy is in crisis (e.g., see Chapter 2 in the book by

Landemore [145] and the references therein). In particular, the justification of representative

bodies is called into question whenever they make decisions that appear to go against the

interests of those they are supposed to represent. In line with this, a survey by the Pew

Research Center [235] finds that, while there remains broad global support for representative

democracy, there is also a strong sense that existing political systems need reform.

7.1.1 Problem Statement

In this chapter, we focus on the task of selecting a representative body, which is a crucial

ingredient of all democratic institutions as argued by political scientists [142, 150, 165, 170,

172, 197]. There is no shortage of innovative proposals to change how representative bodies

are selected around the world. For example, some propose to select representatives at random

(a.k.a. sortition) [32], to elect them through transitive delegations (a.k.a. liquid democracy)

[229], or to drastically increase the size of parliaments (see, e.g., https://thirty-thousand.org).

Each proposed method has its benefits and drawbacks; however, we lack a systematic way

to evaluate and compare them. Specifically, while there are numerous works in computer

science and political science analyzing the strengths and weaknesses of specific methods,

principled comparisons are rare.1

1The few existing exceptions mostly focus on epistemic aspects, the robustness of representation, and
majority agreement [1, 6, 97, 104].
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7.1.2 Contributions

We call for the development of a unified framework to formulate and compare innovative

and traditional selection mechanisms on a more principled basis. Having formulated differ-

ent mechanisms within the same framework then offers the possibility to formulate different

desiderata in the same framework. While we believe that comparisons from different per-

spectives are possible and, in fact, urgently needed, we put forward an axiomatic view on

selection mechanisms, drawing inspiration from the rich social choice literature on voting

rules. In the main part of the chapter, we give a concrete example of how a systematic

comparison from an axiomatic perspective of selection mechanisms could look like. Firstly,

we present a simple yet rich mathematical framework to formulate different selection mech-

anisms. Secondly, we define various axioms capturing notions of cogent representation. We

hope that these axioms can be used to quantitatively investigate inherent and poorly un-

derstood trade-offs at the heart of democratic innovations. Notably, our research program’s

focus is not on finding the “ideal” representation system. We rather envision building a

navigator that maps selection mechanisms to axioms. We advocate for building a coherent

picture of the advantages and disadvantages of competing selection proposals to gear public

debates towards what kind of trade-offs societies are facing, instead of continuing to argue

for competing selection mechanisms on disconnected grounds.

7.1.3 Related Work

In recent years, computer science and democratic innovations have become increasingly inter-

twined, with computer scientists tackling many algorithmic design and scalability problems

arising in different representation schemes and analyzing such schemes axiomatically. In fact,

only with advancements in information technology, the idea of more complex and interac-

tive voting models is becoming more commonplace [36]. Miller [174] and Tullock [224], for
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instance, argued that richer political decision-making processes on a nationwide scale have

recently become possible thanks to technology. Our envisioned research program again relies

on the expertise of computer scientists. More specifically, many areas of the AAMAS com-

munity could contribute to our endeavour to mathematically formulate and analyze selection

mechanisms and desiderata. For instance, (i) the Social Choice and Cooperative Game The-

ory community has expertise in the axiomatic analysis of voting rules, (ii) the Coordination,

Organisations, Institutions, and Norms community can contribute a normative perspective,

and (iii) the Humans and AI / Human-Agent Interaction area could help in the analysis of

usability aspects.

In turn, making progress on representative selection mechanisms has also direct benefits

for their applications in computer systems. For example, some blockchains select validators

via a nominated proof-of-stake protocol, and the representativeness of the selection is es-

sential for the security of the system [44]. Further afield, blockchain-enabled Decentralized

Autonomous Organizations (DAOs) are at the forefront of testing innovative governance

systems based on interactive procedures [7, 133, 242]. Good (e-)governance remains a vast

open question [115].

7.2 Mathematical Framework

In this section, we outline a mathematical framework to model selection mechanisms. First,

we define some preliminary notation. A matrix is stochastic if each row sums up to 1. For a

natural number 𝑛 ∈ N, let [𝑛] denote the set {1, 2, . . . , 𝑛} and let 𝑒𝑛 ∈ N1×𝑛 denote the row

vector containing all ones. For a vector 𝑎 ∈ R1×𝑛, let ‖𝑎‖1 denote the ℓ1−norm of 𝑎, i.e.,

‖𝑎‖1 =
∑︀𝑛

𝑖=1 |𝑎𝑖|.

211



7.2.1 Modeling Representation

We present a mathematical framework for the following task: A group N = [𝑛] of 𝑛 agents

wants to select a subset of N to act as a representative body through a selection mecha-

nism 𝑀 . We additionally assume that the agents selected to be part of the representative

body can have different voting weights, i.e., in a decision made by the representative body,

some agents’ votes have more weight than others. Formally, given N, we want to select a

weight vector w ∈ R𝑛
≥0. For each 𝑖 ∈ N, if w𝑖 > 0, then 𝑖 is selected as part of the represen-

tative body and has voting weight w𝑖. The size of the induced representative body is given

by |{𝑖 ∈ N | w𝑖 > 0}|.

Representation Matrix. The relation of agents is captured by a representation matrix

Γ ∈ R𝑛×𝑛, where the entry Γ𝑖𝑗 describes how well agent 𝑗 can represent agent 𝑖. Γ is a

stochastic matrix that allows fractional entries to account for the fact that agent 𝑖 may be

best represented by a mixture of other agents. How well 𝑖 feels represented by 𝑗 may be

based on complex interactions of multiple aspects such that the issues 𝑖 cares about, the

relative preferences of 𝑗 and 𝑖 on these and other issues, intrinsic characteristics of 𝑖 and 𝑗,

and the underlying social network capturing who knows who.2 Hence, the matrix Γ captures

the complex nature of potential representation between agents in a simple yet rich form.

Example 1. Consider the following example: N = {𝐴,𝐵,𝐶,𝐷,𝐸} such that 𝐴 and 𝐵

belong to some party, and 𝐶,𝐷 and 𝐸 to another party. Imagine that 𝐴 and 𝐸 are extreme

candidates seeking power in their respective parties. Moreover, 𝐵 and 𝐷 are completely

partisan and would never want to be represented by someone outside their parties. In contrast,

𝐶 is moderate in their beliefs and could be represented by other candidates with non-extreme
2In line with this reasoning, political theorists have argued that quality of representation is multidimen-

sional and depends on different factors such as similarities between the representative and the constituents
(descriptive representation [162]), alignment of interests and values (gyroscopic representation [165]), or
advancement of constituents’ interests by the representative (substantive representation [188]).
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⎡⎢⎢⎢⎢⎣

𝐴 𝐵 𝐶 𝐷 𝐸

𝐴 1 0 0 0 0
𝐵 2/3 1/3 0 0 0
𝐶 0 1/3 2/3 0 0
𝐷 0 0 2/5 1/5 2/5
𝐸 0 0 0 0 1

⎤⎥⎥⎥⎥⎦
Figure 7.1: Representation matrix Γ for the instance described in Example 1. Rows and
columns are indexed with agents.

views. This situation could be represented by the representation matrix Γ given in Figure

7.1.

Interpreting the Representation Matrix. The representation matrix can be inter-

preted as giving rise to voting behavior. Specifically, assuming that each agent can split

their vote in an arbitrary way, the matrix entries can be thought of as the ideal split of

an agent’s vote into fractional votes. In this chapter, we will focus on uninominal ballots,

i.e., each agent can vote for exactly one other agent to be part of the representative body.

Accordingly, we interpret the entry Γ𝑖𝑗 as the probability that agent 𝑖 selects (i.e., votes for)

agent 𝑗.3

Expected Vote Share. Using the probabilistic interpretation of Γ for uninominal ballots

allows us to reason about the expected share of votes an agent receives. For this, let 𝑉𝑗 be the

random variable representing the vote share agent 𝑗 receives under the representation matrix

Γ. Let 𝑉 be the vector of the 𝑛 random variables 𝑉1, . . . , 𝑉𝑛. Then, the expected vote share

E[𝑉𝑗] of agent 𝑗 is the sum of the 𝑗-th column of Γ, i.e., E[𝑉𝑗] =
∑︀𝑛

𝑖=1 Γ𝑖𝑗 and E[𝑉 ] = Γ𝑇 𝑒𝑛.

In an idealistic setting, we would select all agents as members of the representative body

and give each agent 𝑗 a voting weight of E[𝑉𝑗], i.e., w𝑗 = E[𝑉𝑗] for all 𝑗 ∈ N. Accordingly, to

evaluate the quality of different selection mechanisms, we will compare the (ideal) expected
3The translation of Γ to votes can be extended to other ballot formats such as approval ballots or ranked

ballots.
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vote share E[𝑉 ] to the voting weights of agents returned by the mechanism, assuming that

agents vote as described by Γ. For the representation matrix given in Figure 7.1, the vector

of expected vote shares of the agents is E[𝑉 ] =
(︀
5
3
, 2
3
, 16
15
, 1
5
, 7
5

)︀
.

Properties of the Representation Matrix. We envision that the algebraic properties

of a given representation matrix Γ could model salient societal characteristics of N relevant

to an axiomatic analysis: polarized groups would be characterized by a block matrix Γ, the

relative magnitude of Γ’s trace would quantify the amount of power-seeking agents in the

group, the rank of Γ would model how correlated agents are to each other, etc. In line with

axiomatic results from social choice theory [9, 93], we expect to find impossibility theorems

that can be circumvented by restricting the structure of Γ.

7.2.2 Selection Mechansisms

We want to analyze selection mechanisms 𝑀 that, given the uninomial ballots from the

agents, return a weight vector. As an additional part of the input, our mechanisms may take

a pre-specified subset 𝒞 ⊆ N of 𝑚 agents acting as candidates and an integer 𝑘 describing

the number of agents that can be selected to be part of the representative body. For a

mechanism 𝑀 and body size 𝑘, we define a function 𝑓𝑀𝑘 that given Γ and 𝒞 returns the

candidates’ expected voting weights under Γ and 𝒞.4 Formally, 𝑓𝑀𝑘 is a function

𝑓𝑀𝑘 : R𝑛×𝑛 × (2N ∖ ∅) → R𝑛×1

such that {𝑖 ∈ N | 𝑓𝑀𝑘(Γ, 𝒞)𝑖 > 0} is a subset of 𝐶 of size at most 𝑘. Here, 𝑓𝑀𝑘 (Γ, 𝒞)𝑖 is the

expected voting weight (E[w𝑖]) of candidate 𝑖 ∈ 𝒞 in a body of size 𝑘 selected by mechanism

𝑀 assuming that 𝑖 ∈ N votes for 𝑗 ∈ 𝒞 with probability depending on Γ𝑖𝑗.
4Some mechanisms need neither a candidate set 𝒞 nor the size of the representative body 𝑘 as input (in

this case we drop 𝑘 from 𝑓𝑀𝑘).
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We now describe how the expected voting weights for different selection mechanisms can

be computed, using the representation matrix given in Figure 7.1 as a running example.

7.2.2.1 Direct Democracy (D)

In direct democracy assemblies, all agents are elected in the represented body. Thus, 𝒞 = N

and 𝑓𝐷 (Γ,N) = 𝑒𝑛 for all representation matrices Γ.

7.2.2.2 First-Past-The-Post (F)

First-past-the-post voting is widely used around the world but also widely criticized for,

among other things, leaving voters feeling underrepresented [27]. In first-past-the-post, a

voting weight of 1 is given to the candidate receiving the highest number of votes and 0

to all other candidates. Notably, in first-past-the-post elections the electorate is typically

partitioned into different voting districts, each selecting its own representative. We focus on

the single-district case; however, our model can be extended to parallel independent districts.

Continuing Example 1, let 𝒞 = {𝐴,𝐵,𝐶,𝐸}. Note that the function 𝑓𝐹1 alters the

representation matrix to account for the set of candidates: agents can only vote for candi-

dates, and we assume that candidates always select themselves. In the running example, the

representation matrix projected on the set of candidates becomes

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐴 𝐵 𝐶 𝐷 𝐸

𝐴 1 0 0 0 0

𝐵 0 1 0 0 0

𝐶 0 0 1 0 0

𝐷 0 0 1/2 0 1/2

𝐸 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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With probability 0.5, 𝐶 receives 2 votes and 𝐴,𝐵 and 𝐸 receive 1 vote (resulting in 𝐶

having a voting weight of 1 in the representative body and all other agents having a voting

weight of zero), and with probability 0.5, 𝐸 receives 2 votes and 𝐴,𝐵 and 𝐶 receive 1 vote.

Consequently, we get 𝑓𝐹1(Γ, 𝒞) = (0, 0, 1/2, 0, 1/2)𝑇 .

7.2.2.3 Proxy Voting (P)

In proxy voting, all agents are presented with a pre-defined pool of candidates, and each

agent can delegate their voting power to one of the candidates. All candidates are de facto

part of the representative body, and candidates have a voting power proportional to the

number of votes delegated to them.5 Proxy voting has been studied both within computer

science [7, 51] and political sciences [174], with some works extending it to more flexible

issue-based delegations [1].

The expected voting weight under proxy voting is the sum of expected delegations for

the proxies (as in First-Past-The-Post, we adapt the representation matrix to account for

the candidate set). Assuming again 𝒞 = {𝐴,𝐵,𝐶,𝐸} in Example 1, since 𝐷′s vote goes to

𝐶 with probability 0.5 and to 𝐸 with probability 0.5, we get 𝑓𝑃 (Γ, 𝒞) = (1, 1, 3/2, 0, 3/2)𝑇 .

7.2.2.4 Liquid Democracy (L)

In liquid democracy, each agent can choose to be part of the representative body or delegate

their vote to another agent. Delegations are transitive, i.e., if 𝐴 delegates to 𝐵 and 𝐵

delegates to 𝐶, and 𝐶 decides to be in the representative body, then 𝐶 votes on behalf of

themself, as well as 𝐴 and 𝐵. The representative body consists of all agents who self-select,

with their voting power being set to the number of votes (transitively) delegated to them
5Proxy voting is closely related to the widespread practice of party-list elections [195], where agents

vote for parties and the seats in the representative body are distributed so that the number of seats of a
party is proportional to the number of received votes. We focus on proxy voting as it allows for a cleaner
mathematical formulation.
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plus one. Liquid democracy has received considerable attention in the computer science

community by studying it from a procedural and epistemic perspective [25, 38, 81, 102,

111, 130, 243], developing dedicated supporting software [21, 186], and examining possible

extensions [38, 55, 87]. Liquid Democracy has also been scrutinized from a political science

perspective [26, 174, 230].

To find the expected voting weights of the agents under transitive delegations, we leverage

the representation matrix to exhaust all possible configurations of transitive delegations and

compute their probability. For instance, one possible configuration in Example 1 is that

every agent votes for themselves (which happens with probability 2
45

), resulting in all agents

being part of the representative body and having voting weight 1.6 Overall, the expected

voting weights are as follows: 𝑓𝐿(Γ,N) =
(︀
89
45
, 22
45
, 14
15
, 1
5
, 7
5

)︀𝑇 .

7.2.2.5 Sortition (S)

Sortition is a selection method which draws at random a subset of the population to act as the

representative body [70, 83, 145, 178]. The method allows equal access to decision-making

and does not require a voting phase. Agents who do not participate in the representative

body despite being selected pose problems with the fairness guarantees offered by sortition.

Computer scientists are investigating algorithmic ways to deal with this issue [83, 84]. The

representative body to be found has a fixed size 𝑘 < 𝑛 and is found uniformly at random

from N. All members of the representative body have an equal voting weight. Thus, the

expected voting weight of each agent is 𝑘
𝑛
, i.e., 𝑓𝑆𝑘 (Γ,N) = 𝑘

𝑛
𝑒𝑛.

Note that selection mechanisms differ with respect to different dimensions, in particular,

(i) whether candidates are pre-selected (𝑚 < 𝑛) or anyone can be part of the representative

body (𝑚 = 𝑛), (ii) whether the output representative body has a predefined size or not,
6Note that if there is a delegation cycle, the votes of agents in the cycle are lost. Accordingly, their voting

weight is set to zero and the agents are effectively ignored.
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and (iii) whether each agent has a direct link to some member of the representative body

they support (‖𝑓𝑀𝑘 (Γ, 𝒞)‖1 = 𝑛), or some agents are virtually represented (by someone

they did not necessarily vote for) (‖𝑓𝑀𝑘 (Γ, 𝒞)‖1 < 𝑛). We call these dimensions open-closed,

flexible-rigid, and direct-virtual, respectively. The above-described selection mechanisms are

all located on different positions of the induced 3-dimensional space because some allow

more flexibility, or represent more agents by design. We want to understand the impact of

these design choices on desirable axioms. In turn, the arising 3-dimensional space helps with

comparing different mechanisms. We envision that mechanisms from a certain region of this

3-dimensional space perform particularly well (or not) with respect to some of our axioms.

7.3 Axioms

We focus on five axioms, each capturing different aspects of representation: proportionality,

diversity, monotonicity, faithfulness, and effectiveness. We lean on both the field of (com-

putational) social choice and political science for these axioms. Our described axioms are a

first step toward clarifying what various selection mechanisms entail; this is not to pretend

that these desiderata are the only ones that matter or that they are the “most desirable.”

For instance, one could want to study the selection mechanisms with respect to the quality

of decisions made by the selected body or the accountability of the selected body. This,

however, is outside the scope of our chapter.

7.3.1 𝜀−proportionality

Proportionality captures how “accurately” the expected voting weights of agents in the rep-

resentative body reflect their expected vote share. Proportionality is particularly desirable

to achieve descriptive representation [24, 33, 162, 229, 246], and relates to previous investi-
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gations in political science on proportionality metrics for different selection formulas [197].7

We give a notion of 𝜀-proportionality which insists for each candidate that their normalized

expected vote share and normalized expected voting weight differ by at most 𝜀. To define

this, let

diff (Γ, 𝒞,𝑀𝑘) = max
𝑗∈[𝑛]

⃒⃒⃒⃒
⃒ E[𝑉𝑗]

‖E[𝑉 ]‖1
−

𝑓𝑀𝑘 (Γ, 𝒞)𝑗
‖𝑓𝑀𝑘 (Γ, 𝒞)‖1

⃒⃒⃒⃒
⃒ .

Then, 𝜀-proportionality requires that diff (Γ, 𝒞,𝑀𝑘) ≤ 𝜀. For selection mechanisms that

depend on a closed set of candidates, define 𝜀𝑀𝑘 = max𝒞⊂N diff (Γ, 𝒞,𝑀𝑘) and 𝜀𝑀𝑘 =

min𝒞⊂N diff (Γ, 𝒞,𝑀𝑘) as the maximum, respectively minimum, largest deviation of a can-

didate’s expected voting weight from its expected vote share over all possible candidate

sets.

To give an example for 𝜀−proportionality, we again make use of the setting described in

Example 1. In Table 7.1, we give the values of 𝜀 for which each of the selection mechanisms

are 𝜀-proportional on Example 1. We see that liquid democracy has the smallest value of 𝜀 in

this case; whereas first-past-the-post does not manage to distribute the voting weight to the

selected body as efficiently. An interesting takeaway from studying the selection mechanisms

via this axiom is that we see that the proportionality of sortition is independent of the size

of the body, including the case where the sortition is the size of the population (𝑘 = 𝑛) and

direct democracy is recovered.

7.3.2 Diversity

Mostly relevant in the deliberation stage [46, 72, 145], we interpret diversity as requiring that

all opinions should be present in the representative body. We formalize it as “if the expected

vote share of a candidate is positive, then so should be their expected voting weight”, i.e.,
7Note that proportionality can be defined as the descriptive representation of votes, attributes, or prefer-

ences [162]. Here, we only model the proportionality of expressed votes rather than any other characteristic
of the electorate.
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E[𝑉𝑗] > 0 implies 𝑓𝑀𝑘 (Γ, 𝒞)𝑗 > 0 for all 𝑗 ∈ 𝒞.

7.3.3 Monotonicity

This benchmark is standard in social choice theory [177]. Let Γ and Γ′ be some representation

matrices. If in the representation matrix Γ′ the expected vote share of a candidate 𝑗 is larger

than in Γ and the expected vote share does not increase for any other candidates, then 𝑗’s

expected voting weight increases. That is, if Γ and Γ′ be such that E[𝑉 ′
𝑗 ] > E[𝑉𝑗] and E[𝑉 ′

𝑖 ] ≤

E[𝑉𝑖] for all 𝑖 ̸= 𝑗, then the inequality 𝑓𝑀𝑘(Γ′, 𝒞)𝑗 ≥ 𝑓𝑀𝑘(Γ, 𝒞)𝑗 should hold.

7.3.4 Faithfulness

This axiom ensures that candidates are not hurt by having a higher expected vote share.

The axiom requires that if a candidate has a higher vote share than some other candidate,

then they also have a higher expected voting weight as computed by the mechanism 𝑀 , i.e.,

E[𝑉𝑖] ≥ E[𝑉𝑗] implies 𝑓𝑀𝑘(Γ, 𝒞)𝑖 ≥ 𝑓𝑀𝑘(Γ, 𝒞)𝑗 for all 𝑖, 𝑗 ∈ 𝒞.

7.3.5 𝛾−effectiveness

Finally, effectiveness models potential deadlocks when no majoritarian coalition may come

to an agreement. This benchmark measures the size of the smallest coalition needed to have

majority support for some proposal. For a given mechanism 𝑀 and candidate set 𝒞, it is

defined as the expected smallest number 𝛾𝑀𝑘
𝒞 such that some coalition of 𝛾𝑀𝑘

𝒞 representatives

gather strictly more than half of the voting weight. For mechanisms that rely on a specified

set of candidates, it would again be interesting to look at the worst and best-case scenarios

for 𝛾𝑀𝑘
𝒞 over all possible candidates set of fixed size.
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𝑓𝐷 𝑓𝐹1 𝑓𝑃 𝑓𝐿 𝑓𝑆𝑘

𝜀 0.16 [0.33, 0.86] [0.13, 0.33] 0.06 0.16

Table 7.1: The minimum values of 𝜀 for 𝜀−proportionality in Example 1 for each of the
different selection mechanisms: direct democracy (D), first-past-the-post (F), proxy voting
(P), liquid democracy (L), and sortition (S). The intervals denote the best and worst-case
𝜀 over all candidates sets. For sortition, the presented 𝜖 value holds for all sizes of the
body k ∈ [n].

7.4 Discussion

We have argued that there is a need for a more systematic comparison of different selection

mechanisms within a unified framework to understand the trade-offs inherent to the selection

mechanisms currently on the table to open democratic representation [145]. Taking a first

step in this direction, we have presented a simple model that allows the formulation of many

different selection mechanisms together with axioms derived from political science and social

choice theory that can be used to compare and assess these mechanisms.

We do not see our model and axioms as final or exhaustive, and we believe that asking

the right questions is already the first research challenge. Nevertheless, there are interesting

open questions arising from our study: Which of these mechanisms always satisfy diversity,

monotonicity, and faithfulness? Can we obtain meaningful bounds on the 𝜖-proportionality

or 𝛾-effectiveness of the different mechanisms? While it seems unlikely that general bounds

can be obtained, we hope that identifying characteristics of the representation matrix could

correspond to a guarantee of certain proportionality and effectiveness values. Moreover, it

would be interesting to obtain comparative statements in the sense that one mechanism is

always guaranteed to be better than another (at least if the “right” candidate set is chosen).

Lastly, one may also wonder about the influence of the number of candidates and the selected

set of candidates on the axiomatic performance of our mechanisms. More generally, it would

be interesting to identify general characteristics of the selection mechanisms that benefit
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axiomatic guarantees, potentially extending upon our discussed open-closed, flexible-rigid,

and direct-virtual dimensions.
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Chapter 8

Conclusion

In conclusion, this thesis has delved into various aspects of representative democracy, shed-

ding light on different selection mechanisms, their epistemic performance, and procedural

implications.

The thesis investigates the interplay between diversity and expertise in representation

processes, started from the aggregation of votes in the epistemic framework in Chapter 2.

Next, the exploration of liquid democracy, a novel selection model that combines elements

of direct and representative democracy, has been a central theme explored in Chapters 3

to 5. Through theoretical analysis and empirical experiments, the potential benefits and

challenges of liquid democracy have been examined. The concept of concentration of power,

where certain individuals accumulate significant delegations, has been investigated, revealing

insights into its impact on decision-making outcomes. By quantifying permissible levels of

power concentration and proposing realistic delegation models, the thesis contributes to

understanding the dynamics of liquid democracy and its viability as an emerging paradigm.

There remain several exciting avenues for future exploration.

• Incorporating Network Structure: An extension of the model to incorporate un-

derlying social networks could provide a more realistic representation of delegation
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dynamics. Investigating how different network structures impact power concentration

and decision outcomes would be valuable.

• Dependent Voting: Relaxing the assumption of independent voting could lead to

more accurate models, especially when voters are locally dependent on a few neighbors.

Investigating the impact of various degrees of voter interdependence is an interesting

direction.

• Reasons to Delegate: Investigating the underlying reasons and context-dependencies

driving participants’ decisions to delegate or not would be valuable.

• Strategic Behavior: Considering strategic behaviors within the liquid democracy

context, akin to game-theoretic analyses with or without incentives, would provide

insights into how agents might manipulate delegation mechanisms for their advantage.

• Transparency vs. Security: Further examining the trade-off between transparency

and security in liquid democracy systems is crucial, especially regarding the potential

for voter coercion when delegation graphs are transparent.

• Handling Problematic Delegations: The experimental setup removed problematic

delegations, such as those given to non-participants or resulting in cycles. Investigat-

ing the frequency and nature of such problematic delegations, as well as developing

strategies to handle them effectively, would enhance the robustness of the empirical

results.

• Beyond the Epistemic Model: Exploring scenarios where decisions are not binary

and may involve subjective criteria would enhance the applicability of the findings to

a broader range of real-world decision-making processes.

• Diverse Decision Contexts: Expanding the analysis to different decision contexts,
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such as political decisions and corporate governance, and studying how liquid democ-

racy performs across diverse scenarios will enrich our understanding of its applicability.

• Comparative Studies: Conducting comparative studies that benchmark liquid democ-

racy against other selection mechanisms, both theoretically and empirically, could offer

a broader perspective on its advantages and drawbacks.

Another key aspect of this thesis has been to reflect on normative considerations for

representative democracy and on democratic innovations to build a renewed case for repre-

sentative democracy as democratic governance. Chapter 6 delved into the procedural aspects

of selection mechanisms, shedding light on the potential enhancements that could be intro-

duced to representative assemblies. It introduced an instantiation of proxy democracy as a

selection rule for representation, comparing it to lottocracy and dissecting their respective

implications. Proxy democracy, with its per-issue voting scheme and flexible representation,

offers a new avenue for enhancing democratic representation. On the other hand, lottocracy

raises novel questions about representation that challenge traditional democratic assump-

tions. The future trajectory of democratic representation holds significant implications. As

we move forward, a myriad of normative and practical questions remain to be tackled.

• Symbolic and Substantive Representation: The discussion surrounding these se-

lection mechanisms necessitates a broader exploration of their symbolic and substantive

implications.

• Concrete Implementation: Practical considerations, ranging from the logistics of

implementation to the reliability of digital platforms, further underscore the need

for comprehensive research. The scale of parliaments presents a practical challenge

that must be addressed to ensure inclusive representation within lottocracy and proxy

democracy. While the idea of large congresses might seem counter intuitive, new law-

making protocols could be devised to manage the increased scale of representation
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without sacrificing the benefits of deliberation. Additionally, exploring hybrid models

that blend lottocracy and proxy democracy elements might strike a balance between

inclusivity and preventing an undue concentration of power or biased self-selection.

Last, the absence of a unified framework for axiomatically analyzing and comparing rep-

resentative processes has hindered comparative studies. Chapter 7 addresses this void by

advocating the integration of computational social choice concepts and political philosophy

concepts to establish a unifying axiomatic framework. We classified selection mechanisms

based on whether they are open-closed, flexible-rigid, and direct-virtual and further discussed

the following five axioms: proportionality, diversity, monotonicity, faithfulness, and effective-

ness. While the taxonomy and axioms presented are a significant stride towards this goal,

they are not intended to be final or exhaustive. Rather, they pave the way for posing what

we think is an essential step that lies ahead.

The quest to shape the future of representative democracy requires us to confront these

challenges head-on and navigate the intricate interplay of values, trade-offs, and real-world

constraints. It is a pressing concern in today’s democratic landscape. Refining our un-

derstanding and imaginary of representative democracy, we can contribute to shaping its

future.
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Appendix A

Supplemental Material for Chapter 4:

An Empirical Analysis of Liquid

Democracy’s Epistemic Performance

A.1 Experiments

We report hereafter the average performance of liquid and direct democracy in each of the six

experiments we ran. We observe positive deltas overall due to the use of liquid democracy,

and we need specifications like in Equation (4.3) to test the magnitude and significance of

this increase due to the correlation structure of the data.
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Table A.1: Groups Characteristics

Qualitative groups description, sizes and performance under direct and liquid democracy across all
questions.

Group
ID

Group Description Group Size Direct
Democ-
racy

Liquid
Democ-
racy

1 Company Employees Present at a Workshop 14 0.614 0.625
2 Undergraduate Students Present in Class 22 0.675 0.703
3 Research Department Meeting 19 0.632 0.665
4 Company Employees Present at a Workshop 27 0.629 0.661
5 Participants at an Academic Conference 36 0.702 0.743
6 Participants at an Academic Conference 50 0.573 0.623

A.2 Material

This section contains examples of the delegating and the voting pages.
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Figure A.1: Excerpts from the Liquid Democracy Survey.

Example of survey task when participants were asked to delegate at the category-level (top) and to
answer at a specific questions (bottom).
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A.3 Methods

A.3.1 Pairwise Tukey Tests

We show hereafter the results of the pairwise comparison of propensity of delegating and

expertise for the following genders: non-binary, male, female, prefer to self-describe.

Figure A.2: Pairwise Tukey Tests

Pairwise Tukey test across different gender regarding expertise (top) and propensity to delegate
(bottom). Pairwise test shows that expertise and propensity to delegate is indistinguishable across
gender.
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A.3.2 Normality Assumptions for Regressions

We check that the variables used in the different regressions are indeed normal, per the tests’

assumptions.

Figure A.3: Normality Tests

From top to bottom and left to right, normality tests for the average expertise in direct and liquid
democracies, the average vote outcome in direct and liquid democracies, the estimated values of 𝜙,
the probability of delegating and the participants’ expertise.
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A.4 Examples of Delegation Graphs

A.4.1 Delegation Graph for Task 𝑇3 and 𝑇2

This page is for task 𝑇3 and 𝑇2 from Experiments 2 and 3 respectively. The numbers

represents the proportion of correct answers per participant per task, that is, 𝜂naive
𝑖,𝑡 . In this

graph, we observe little concentration of power, and well-balanced delegation counts across

relatively competent participants.

Figure A.4: Examples of Delegation Graphs

Delegation graphs for task 𝑇3 from Experiment 2 (left) and task 𝑇2 from Experiment 3 (right). The
numbers represents the proportion of correct answers per participant per task, that is, 𝜂naive

𝑖,𝑡 . In
these graphs, we observe little concentration of power, a balanced set of participants post-delegation,
and delegations towards relatively more expert participants.
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A.4.2 Delegation Graph for Task 𝑇1 and 𝑇5

This page is for task 𝑇1 and 𝑇5 from Experiments 4 and 5 respectively. The numbers

represents the proportion of correct answers per participant per task, that is, 𝜂naive
𝑖,𝑡 . In these

graphs, we observe rather extreme concentration of power.

Figure A.5: Examples of Delegation Graphs

Delegation graphs for task 𝑇1 from Experiment 4 (left) and task 𝑇5 from Experiment 5 (right). The
numbers represents the proportion of correct answers per participant per task, that is, 𝜂naive

𝑖,𝑡 . In
these graphs, we observe severe concentration of power in the hands of one participant. The right
plot shows the worst concentration observed across the experiments where one participant received
28 transitive delegations (and 11 direct delegations) in s group of 36 participants.
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A.4.3 Delegation Graph for Task 𝑇7

This page is for task 𝑇7 from Experiment 6. The numbers represents the proportion of correct

answers per participant per task, that is, 𝜂naive
𝑖,𝑡 . In this graph, we observe little concentration

of power, and well-balanced delegation counts across relatively competent participants.

Figure A.6: Delegation Graph from experiment 6 and task 7.
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A.4.4 Delegation Graph for Task 𝑇15

This page is for task 𝑇15 from Experiment 6. The numbers represents the proportion of

correct answers per participant per task, that is, 𝜂naive
𝑖,𝑡 . In this graph, we observe more

concentration of power, and delegation across participants with relatively low expertise. We

also note a delegation cycle in the upper right side.

Figure A.7: Delegation Graph from experiment 6 and task 15.
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A.5 Estimating the 𝑞 function: Probability of Delegating

as a Function of Expertise

A.5.1 Effects Sizes with Fixed Effects

Table A.2: Results on the Relation between Delegation Behaviors and Average Expertise or
Confidence

The summary of the average and heterogeneous effects, estimated by the models in Equations (4.1)
and (4.2).

Overall Model With Fixed Effects

Equation (4.1) Equation (4.2)

Effect Size 𝛽𝑞 −2.23**** −2.90**** −1.67**** −1.86****

(0.42) (0.60) (0.35) (0.45)

Fixed Effects NA i t t, i

Clustered S.E. i i i i

Note: ****p<0.0001

Adding fixed effects, we account for participant-specific and/or task-specific characteris-

tics that may affect the outcome variable. We see that within each participant, the prob-

ability of delegating decreases faster with expertise than in the model without fixed effect.

This implies that participant-specific characteristics (such as confidence) is also at play in

delegation decisions (and it seems that those more confident are not always more expert).

We also see that within each task, the probability of delegating decreases more slowly with

expertise than in the model without fixed effect. This implies that task-specific characteris-

tics (such as difficulty) are at play in delegation decisions (and it seems that more difficult

task are associated lower expertise).
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A.5.2 Task-specific Effects

The results for the estimation of 𝑞 per task are shown below.

Table A.3: Results on the Relation between Delegation Behaviors and Average Expertise or
Confidence

The summary of the average and heterogeneous effects, estimated by the models in Equation (4.2)
for the four main tasks conducted in each experiment. Recall that we have 6 times more data
points for tasks 1, 2 and 3 since they were performed across all experiments: sport tasks were
different across different experiments while the others were constant.

Overall Model Tasks Models

(Tasks)

(𝑇1) (𝑇2) (𝑇3) (𝑇4) (𝑇5) (𝑇6) (𝑇7)

Effect Size 𝛽𝑞 −2.23**** −2.05 −1.96 −4.06*** 2.33 0.21 −8.04* −1.50
(0.42) (1.58) (1.50) (1.25) (4.05) (1.57) (4.88) (0.23)

Clustered S.E. i NA NA NA NA NA NA NA

Note: *p<0.1; **p<0.05; ***p<0.01

Table A.4: Results on the Relation between Delegation Behaviors and Average Expertise or
Confidence for questions specific to experiment 6.

The summary of the average and heterogeneous effects, estimated by the models in Equation (4.2)
for the tasks specific to experiment 6. Note that we have many less data-points for these tasks since
fewer subject took part into it overall.

Tasks Models

(Tasks)

(𝑇8) (𝑇9) (𝑇10) (𝑇11) (𝑇12) (𝑇13) (𝑇14) (𝑇15)

Effect Size 𝛽𝑞 −5.13 1.57 −3.87 −2.43 −2.50 −3.62* 3.70 −1.58
(5.09) (2.15) (2.66) (2.38) (2.01) (1.88) (2.89) (1.57)

Clustered S.E. NA NA NA NA NA NA NA NA

Note: *p<0.1; **p<0.05; ***p<0.01
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A.5.3 𝑞 based on k-mean bucketing

We could also have estimated 𝑞 from the buckets though this method would be less precise,

relying on aggregate data. We show hereafter the propensity of delegating per bucket, as

calculated using the k-means clustering algorithm, and the curve displays a strong decreasing

tendency, corroborating Section 4.3.3.

0.5 0.6 0.7 0.8 0.9
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Figure A.8: Estimation of 𝑞 using k-means clustering buckets

A.6 Estimating the 𝜙 function: Delegation Choice as a

Function of Expertise

A.6.1 k-mean bucketing

We show the curve from which we learn the optimal number of buckets using k-means

clustering, and the resulting bucketing.
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Figure A.9: Ouput of the k-means clustering procedure

A.6.2 Maximum Likelihood Estimation for the Multinomial Model

We next obtain a closed form for the maximum likelihood estimators that we invert herein.

Let the matrix 𝑀 ∈ R𝐵×𝐵 be such that 𝑀𝜙⃗ = 0𝐵 + 𝑒1 where 0𝐵 is the vector of size 𝐵 with

only zeros and 𝑒1 is the vector of size 𝐵 with a 1 on the first coordinate and zeros otherwise.

(Without loss of generality, we replace the first equation with
∑︀𝐵

𝑘=1 𝜙
ℓ(𝜂𝑘) = 1 and recover

𝐵 equations with 𝐵 parameters.) Re-writing Section 4.3.4.2, we get, if 𝑚 ̸= 𝑖:

𝐵∑︁
𝑘=0,𝑘 ̸=𝑚,𝑘 ̸=𝑙

𝑛𝑘𝜙
ℓ(𝜂𝑘)𝑧

ℓ
𝑘 + (𝑛ℓ − 1)𝜙ℓ(𝜂ℓ)𝑧

ℓ
ℓ + 𝑛𝑚𝜙

ℓ(𝜂𝑚)(𝑧
ℓ
𝑚 − 𝑛̃ℓ) (A.1)

and, if 𝑚 = 𝑖:

𝐵∑︁
𝑘=0,𝑘 ̸=𝑚

𝑛𝑘𝜙
ℓ(𝜂𝑘)𝑧

ℓ
𝑘 + (𝑛𝑚 − 1)𝜙ℓ(𝜂𝑚)(𝑧

ℓ
𝑚 − 𝑛̃ℓ) (A.2)

and finally, matrix 𝑀 can be written as follows:
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𝑀 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 · · · 1 1 · · · 1

𝑛1𝑧
ℓ
1 𝑛2(𝑧

ℓ
2 − 𝑛̃ℓ) · · · (𝑛𝑖 − 1)𝑧ℓ𝑖 𝑛𝑖+1𝑧

ℓ
𝑖+1 · · · 𝑛𝐵𝑧

ℓ
𝐵

...
... . . . ...

...
...

...

𝑛1𝑧
ℓ
1 𝑛2𝑧

ℓ
2 · · · (𝑛𝑖 − 1)(𝑧ℓ𝑖 − 𝑛̃ℓ) 𝑛𝑖+1𝑧

ℓ
𝑖+1 · · · 𝑛𝐵𝑧

ℓ
𝐵

𝑛1𝑧
ℓ
1 𝑛2𝑧

ℓ
2 · · · (𝑛𝑖 − 1)𝑧ℓ𝑖 𝑛𝑖+1(𝑧

ℓ
𝑖+1 − 𝑛̃ℓ) · · · 𝑛𝐵𝑧

ℓ
𝐵

...
... . . . ...

...
...

...

𝑛1𝑧
ℓ
1 𝑛2𝑧

ℓ
2 · · · (𝑛𝑖 − 1)𝑧ℓ𝑖 𝑛𝑖+1𝑧

ℓ
𝑖+1 · · · 𝑛𝐵(𝑧

ℓ
𝐵 − 𝑛̃ℓ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
so that

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 · · · 1 1 · · · 1

𝑛1𝑧
ℓ
1 𝑛2(𝑧

ℓ
2 − 𝑛̃ℓ) · · · (𝑛𝑖 − 1)𝑧ℓ𝑖 𝑛𝑖+1𝑧

ℓ
𝑖+1 · · · 𝑛𝐵𝑧

ℓ
𝐵

...
... . . . ...

...
...

...

𝑛1𝑧
ℓ
1 𝑛2𝑧

ℓ
2 · · · (𝑛𝑖 − 1)(𝑧ℓ𝑖 − 𝑛̃ℓ) 𝑛𝑖+1𝑧

ℓ
𝑖+1 · · · 𝑛𝐵𝑧

ℓ
𝐵

𝑛1𝑧
ℓ
1 𝑛2𝑧

ℓ
2 · · · (𝑛𝑖 − 1)𝑧ℓ𝑖 𝑛𝑖+1(𝑧

ℓ
𝑖+1 − 𝑛̃ℓ) · · · 𝑛𝐵𝑧

ℓ
𝐵

...
... . . . ...

...
...

...

𝑛1𝑧
ℓ
1 𝑛2𝑧

ℓ
2 · · · (𝑛𝑖 − 1)𝑧ℓ𝑖 𝑛𝑖+1𝑧

ℓ
𝑖+1 · · · 𝑛𝐵(𝑧

ℓ
𝐵 − 𝑛̃ℓ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜙ℓ(𝜂1)

𝜙ℓ(𝜂2)

...

...

...

...

𝜙ℓ(𝜂𝑏)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

0

...

...

...

...

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
We finally compute 𝜙⃗ = 𝑀−1(0𝐵 + 𝑒1), so that we obtain the estimates for 𝜙ℓ(𝜂𝑘) for all

𝑘 ∈ {1, . . . , 𝐵} for the given task and experiment. We repeat the exercise for all possible

ℓ ∈ {1, . . . , 𝐵}. We finally repeat the operations for each experiment and task. In turn, we

collect, for each pair (experiment, task) a matrix Φ(𝑒,𝑡) whose entry are the 𝜙ℓ
𝑒,𝑡(𝜂𝑘) computed

for that experiment as explained above.

Note that we could also reason from the observed proportion of delegations from type ℓ

to type 𝑘, that should approach the expected proportion of delegations. The latter is equal
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to 𝜙ℓ(𝜂𝑘) appropriately weighted by the weights carried by all potential recipients of the

delegation. Per [111], we assume a complete graph: any participant of type 𝑚 may receive

the delegation with a probability equal to 𝜙ℓ(𝜂𝑚). See Figure A.10 for an example. We

recover the same equations as in Section 4.3.4.2.
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Figure A.10: Example on how to reconstruct 𝜙ℓ with 4 participants of three different types,
ℓ, 𝑘 and 𝑚.

The top left image shows the observed delegation graph among 4 participants. The top right image
shows the probability weighting put on every neighbors from the perspective of a type ℓ′s participant.
The bottom image shows provides an example for the computation involved in Proposition 1.

A.6.3 Task-specific Effects with k-means Clustering

Lastly, we report in Table A.5 the the Kendall tau correlation coefficients for each task to

understand whether the observed behavior is constant across tasks.
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Table A.5: Correlation and p-values for Tasks

The Kendall tau rank correlation coefficient for each task. Note that the first three tasks, there are
96 data points per regression. For those, we observe clear trend that 𝜙 is increasing in its second
coordinate across all three tasks. The following ones, however, rely on 16 data points. *p<0.1;
**p<0.05; ***p<0.01; ****p<0.0001

Task Correlation p-value
𝑇1 0.3647*** 0.0011
𝑇2 0.2621** 0.0079
𝑇3 0.3830**** < 0.0001
𝑇4 -0.1540 0.6233
𝑇5 -0.2055 0.1004
𝑇6 -0.1372 0.5666
𝑇7 0.4768* 0.0201
𝑇8 -0.1925 0.5392
𝑇9 -0.5231** 0.0127
𝑇10 -0.2490 0.2300
𝑇11 0.5427** 0.0108
𝑇12 0.0321 0.9115
𝑇13 0.5644** 0.0059
𝑇14 0.5768** 0.0051
𝑇15 -0.2689 0.1948

A.6.4 Robustenss of Bucketing

We experiment with varying bucketing methods, to ensure that the results are robust. We

show in Figure A.11 the different bucketing methods we tried, and further report below the

resulting 𝜙. We described the first bucketing method in Section 4.3.4; we now discuss the

remaining methods:

A.6.4.1 Equal cut:

With equal cut, we divide the [0, 1] line in 𝐵 buckets 𝑐ℓ = [(ℓ−1)/𝐵, ℓ/𝐵] for ℓ ∈ {1, . . . , 𝐵}

of equal size. We vary the number of buckets 𝐵 from 3 to 10 to ensure robustness of the

approach. When buckets are empty, we compute the weights on the existing types and

re-normalize in the final stage.
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A.6.4.2 Quantile cut:

We cut the [0, 1] line in 𝐵 quantiles 𝑐ℓ for ℓ ∈ [𝑏] so that the number of expertise values

in each bucket is the same and we take the mean expertise in the designated bucket to be

the representative expertise, 𝜂ℓ. That is, 𝜂ℓ =
∑︀

𝑖,𝑡 𝜂𝑖,𝑡I[𝜂𝑖,𝑡∈𝑐ℓ]∑︀
𝑖,𝑡 I[𝜂𝑖,𝑡∈𝑐ℓ]

. In short, each expertise 𝜂𝑖,𝑡 is

assigned to a bucket 𝜂ℓ such that ℓ ≤ 𝜂𝑖,𝑡 < 𝑙 + 1/𝑏. We vary the number of buckets 𝐵 to

ensure robustness of the approach (see Appendix A.6.4).

A.6.4.3 Gaussian Mixture Model:

We assume that the expertise level 𝜂𝑖,𝑡 is drawn from 𝐵 Gaussian distributions that we intend

to reconstruct. To do so, we maximize the log-likelihood log Pr(𝜂⃗) =
∑︀

𝑖,𝑡

∑︀𝑏
𝑘 log (𝜋(𝑘)𝒩 (𝜂𝑖,𝑡|𝜂𝑘, 𝜎2)) ,

where 𝜂⃗ is the vector of 𝜂𝑖,𝑡, 𝜋(𝑘) is the probability of being in Gaussian 𝑘, 𝜂𝑘, 𝜎
2 are the mean

and variance of the 𝑘−th Gaussian and 𝒩 (𝑥|𝜇, 𝑠2) denotes the probability density function

of a Gaussian with mean 𝜇 and standard deviation 𝑠 evaluated at 𝑥. This optimization can-

not be solved in closed-form, and we use the Expectation-Maximization (EM) algorithm to

estimate the Gaussian means 𝜂𝑘, as well as the marginal probabilities Pr(𝑘|𝜂𝑖,𝑘).1 Last, we

find the number of Gaussian 𝐵 that maximizes the likelihood’s cross-validation estimate. In

turn, we obtain an assignment of expertise 𝜂𝑖,𝑡 to 𝐵 Guassian and 𝐵 Gaussian’s mean, that

we denote 𝜂ℓ for the ℓ−th Gaussian. Each expertise 𝜂𝑖,𝑡 is assigned to a Gaussian 𝜂ℓ based on

Pr(𝑘|𝜂𝑖,𝑘). We used the k-means clustering approach instead since the resulting cluster are

very similar yet not normally distributed in either case, violating the underlying assumption

of the Gaussiam Mixture estimation.

Next, we report the results for the estimation of 𝜙 for different buck sizes to test potential

sensitivity of the results to the buck size. We run the same experiments as in Section 4.4.3

with 𝑏 ∈ {3, 5, 7, 10.}
1See details here: https://people.csail.mit.edu/rameshvs/content/gmm-em.pdf.
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Figure A.11: Different Bucketing Methods Illustrated

A.6.4.4 Estimation with three buckets: 𝐵 = 3

Table A.6: Results on the Relation between Delegation Behaviors and Average Expertise or
Confidence

Overall For fixed ℓ

𝑐1 𝑐2 𝑐3

Correlation 0.44**** 0.60*88* 0.43*888 0.34****

P-value 2× 10−11 2× 10−3 2× 10−5 7× 10−4

Note: *p<0.1; **p<0.05; ***p<0.01; ****p<0.0001
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Figure A.12: Estimation of 𝜙 with 𝐵 = 3

Table A.7: Results on the Relation between Delegation Behaviors and Average Expertise or
Confidence

The summary of the average and heterogeneous effects, estimated by Section 4.3.4.3.

Overall For fixed ℓ

𝑐1 𝑐2 𝑐3 𝑐4 𝑐5

Correlation 0.13**** 0.14** 0.06 0.15** 0.10 0.21***

P-value 6× 10−5 6× 10−2 3× 10−1 4× 10−2 10−1 5× 10−3

Note: *p<0.1; **p<0.05; ***p<0.01; ****p<0.0001
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Table A.8: Results on the Relation between Delegation Behaviors and Average Expertise or
Confidence

The summary of the average and heterogeneous effects, estimated by Section 4.3.4.3.

Overall For fixed ℓ

𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 𝑐7

Correlation 0.23**** 0.37 0.36** 0.05 0.18*** 0.25**** 0.16 0.45****

P-value 10−11 3× 10−1 10−2 6× 10−1 10−1 2× 10−4 2× 10−2 3× 10−6

Note: *p<0.1; **p<0.05; ***p<0.01; ****p<0.0001

A.6.4.5 Estimation with five buckets: 𝐵 = 5

A.6.4.6 Estimation with seven buckets: 𝐵 = 7

A.6.4.7 Estimation with ten buckets: 𝐵 = 10

A.6.4.8 Experimentation with quantile cut and 𝐵 = 7

For simplicity, we only show the plots of the quantile split with 𝐵 = 7.
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Figure A.13: Estimation of 𝜙 with 𝐵 = 5
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Figure A.14: Estimation of 𝜙 with 𝐵 = 7
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Figure A.15: Estimation of 𝜙 with 𝐵 = 10
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Table A.9: Results on the Relation between Delegation Behaviors and Average Expertise or
Confidence

The summary of the average and heterogeneous effects, estimated by Section 4.3.4.3.
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Figure A.16: Estimation of 𝜙 with 𝐵 = 7
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Table A.10: Results on the Relation between Delegation Behaviors and Average Expertise
or Confidence

The summary of the average and heterogeneous effects, estimated by Section 4.3.4.3.

Overall For fixed ℓ

𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 𝑐7

Correlation 0.10**** 0.07 0.03 0.08 0.10* 0.11* 0.09 0.29***

P-value 3× 10−5 0.25 0.62 0.16 0.099 0.063 0.17 0.0003

Note: *p<0.1; **p<0.05; ***p<0.01; ****p<0.0001
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A.7 Coalition Analysis

We investigate here the minimal number of participants that gathered half of the votes

in total, so that their coalition would be a majority. We call a participant who votes

directly a guru. Fix a graph (𝑒, 𝑡) and order the weights 𝑤(𝑖,𝑡) in decreasing order. Let

𝑛𝑒,𝑡 =
∑︀𝑁𝑒

𝑖=1 I[𝑤(𝑖,𝑡) > 0] be the number of gurus in a graph. Let
∑︀𝑘

𝑖=1 𝑤(𝑖,𝑡) be the weight

accumulated by the 𝑘 participants with the highest weights. Let 𝑚*
𝑒,𝑡 be the smallest 𝑘

such that
∑︀𝑘

𝑖=1𝑤(𝑖,𝑡) > 0.5; we call this the smallest size of a potentially majority coalition

(SPMC).

We first show in Figure A.17 per-experiment plots with the fraction of votes gathered by

the smallest coalition with the highest total weight; that is, we plot 𝑤(𝑖,𝑡) as a function of 𝑖..

Each color represents a different task.
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Figure A.17: Fraction of votes Gathered by Smallest Coalition that Maximizes Total Weight

Next, we show in Figure A.18 the number of gurus in a graph as a function of the minimal

size of a majority coalition; that is, we plot 𝑛𝑒,𝑡 as a function of 𝑚*
𝑒,𝑡. We see rare occurrences

of graphs with many gurus and small smallest majority coalition, indicating that votes tend
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to be spread among gurus.
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Figure A.18: Number of Gurus as a Function of the Size of the Smallest Potentially Majority
Coalition (SPMC)

Last, we show the minimal size of the SPMC across experiments as a box plot in Fig-

ure A.19; that is, we plot 𝑚*
𝑒,𝑡 as a function of 𝑁𝑒. We see multiple occurrences where a

handful of gurus constitute the smallest majority coalition. This is a trend that requires

further experimentation with larger groups to understand how it evolves asymptotically.
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Figure A.19: Smallest Potentially Majority Coalition

254



A.8 Pre-Experiment

We provide in this section the results of the same analyses in the pre-study, that comprised

6 experiments and a similar design that was used to inform the survey flow and material of

the main study.

A.8.1 Update in the Design for the Main Study

In the main study, the spatial reasoning task was dropped as participants were almost always

correct. Ambiguous questions (for which multiple answers were true) taken from Simoiu

et al. [215] were rephrased to enforce a clear epistemically answer. Questions that were

mislabeled in Simoiu et al. [215] were removed. The survey flow was also changed so that

more questions could be answered in the same amount of time, and all tasks were set to have

the same number of questions |𝑅𝑡| = 8.

A.8.2 Recruitment

The six groups with which the pre-study was ran are described below. There was a total of

102 participants that participated in the surveys between March 21st and April 5th, 2022. Of

the participants across all experiments, 29% were native English speakers, 16% were female,

4% non-binary, and 80% were male.

A.8.3 Material

The tasks used in the pre-study are described below, Table A.12 detail the tasks and Ta-

ble A.13 the questions within the tasks.
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Table A.11: Groups Characteristics

Qualitative groups description, sizes and performance under direct and liquid democracy across all
questions.
Group
ID

Group Description Group Size Direct
Democ-
racy

Liquid
Democ-
racy

1 Research Group 11 0.682 0.713
2 Graduate and Undergraduate Class 12 0.726 0.730
3 Graduate Class 32 0.682 0.695
4 Sports Team 14 0.740 0.748
5 Financial Association 18 0.694 0.729
6 Group of employees, students and faculty 15 0.678 0.703

A.8.4 Assessing Expertise

We run the IRT framework and find a correlation of 97% between the naive expertise 𝜂naive
𝑖,𝑡

and the expertise computed accounting for task difficulty 𝜂𝑖,𝑡. Note that, while the expertise

distribution is normal Appendix A.3.2, the expertise distribution in the pre-study is not, due

to the spatial reasoning task for which almost all participants are correct.

We show the distribution of expertise computed with both the naive and IRT frameworks

in both methods in Figure A.20.
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Figure A.20: Normality Test for expertise in pre-study (left) and Distribution of expertise
per delegation behavior (right)
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Table A.12: Prompts for Each Task

Prompts asked to participant for each task. After reading it, participants decided to delegate or
perform the task themselves. If they delegated, they chose another participant to do the task on
their behalf. If they did not delegate, they answered the questions related to the task (see all
questions on Table A.13). The tasks Landmark and Movie had |𝑅𝑡| = 5 questions, the task spatial
had |𝑅𝑡| = 3 questions and the prediction tasks for Sports had |𝑅𝑡| = 7 questions. The harder the
task (based on the success rate in the original work by [215], the more questions we asked).

ID Task Description Included
in Experi-
ment(s)

Landmark You will be shown images of architectural landmarks from around
the world, and asked to select the country where the landmark is
located.

1, 2, 3, 4, 5, 6

Movie You will be provided with short audio files with theme songs from
various movies, and asked to select the movie it was featured in.

1, 2, 3, 4, 5, 6

English You will be given English idioms, and asked to identify their mean-
ing. An idiom is a group of words that have a meaning not de-
ducible from those of the individual words (e.g., rain cats and dogs,
see the light).

1, 2, 3, 4, 5, 6

Spatial You will be asked to watch a short video of the Cups and Balls
magic trick, and identify the location of the ball at the end of the
trick.

1, 2, 3, 4, 5, 6

Sports You will be given US college basketball teams, and asked to predict
which round they will make it to in the NCAA Tournament, taking
place in March 2022?

1, 2

Sports You will be given upcoming soccer games, and asked to predict the
games’ outcome?

3, 4, 5

Sports You will be given upcoming sport events (soccer and tennis games),
and asked to predict the games’ outcome?

6
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Table A.13: Survey Material

Questions used in the liquid democracy survey. Note that different prediction questions were used for
different experiments; this is simply because predicted outcomes were realized between the running
of experiments. The questions in Knowledge, Popular Culture, and Spatial Reasoning relied on
audio-visual documents that we can share upon request.

Task Prompt Answer

Landmark

This landmark is located in Italy. False
This landmark is located in Turkey. True
This landmark is located in Myanmar. False
This landmark is located in France. False
This landmark is located in Brazil. False

Movie

This music was featured as a theme song in the movie The Hobbit. False
This music was featured as a theme song in the movie The Empire of Sun. False
This music was featured as a theme song in the movie Gravity. True
This music was featured as a theme song in the movie Goodfellas. False
This music was featured as a theme song in the movie The Pianist. False
This music was featured as a theme song in the movie A Passage through
India.

False

This music was featured as a theme song in the movie The Schindler’s List. True

English

“A man of straw" means “A very active person". False
“To drive home" means “To emphasize". True
“To smell a rat" means “To suspect foul dealings". True
“To end in smoke" means “To excite great applause". False
“To catch a tartar" means “To deal with a person who is more than one’s
match".

False

Prediction for Experiments 1-2

The US college basketball team West Virginia Mountaineers will make it to
the Elite Eight in the 2022 NCAA Tournament.

False

The US college basketball team Michigan State Spartans will make it to the
First Round in the 2022 NCAA Tournament.

True

The US college basketball team Syracuse Orange will win the 2022 NCAA
Tournament.

False

The US college basketball team Purdue Boilermakers will make it to the 2nd
round in the 2022 NCAA Tournament.

True

The US college basketball team Arizona Wildcats will make it to the Elite
Eight in the 2022 NCAA Tournament.

False

Prediction for Experiments 3-5

Galatasaray SK will beat FC Barcelona during the Europa League game on
March 17th.

False

Olympic de Marseille and OGC Nice will tie during the French League game
on March 20th.

False

VFL Wolfsburg will beat Bayer 04 Leverkusen during the German League
game on March 20th.

False

Salernitana will lose against Juventus during the Italian League game on
March 20th.

True

FC Barcelona and Real Madrid CF will tie during the Spanish League game
on March 20th.

False

Prediction for Experiment 6

Eintracht Frankfurt will beat FC Barcelona during the Europa League game
on April 7th.

False

Olympic de Lyon and West Ham United will tie during the Europa League
game on April 7th.

True

Brazil will lose to Spain during the Women’s International Friendly game on
April 7th.

False

Neither Rafael Nadal nor Novak Djokovic will qualify for the ATP Masters
1000 Monte Carlo Final on April 17th.

NA

Stefanos Tsitsipas will win the ATP Masters 1000 Monte Carlo Tournament
on April 17th.

NA

Spatial Reasoning
The object is located in the middle cup at the end of the trick. False
The object is located in the middle cup at the end of the trick. False
The object is located in the right cup at the end of the trick. True
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A.8.5 Delegation Metrics

We collected 505 delegation data points, one per participant per task. Of those, 28% were

delegations (like delegators 𝐴,𝐵,𝐶,𝐺 in Section 4.1) and 57% are direct participants that

did not receive any delegation besides their own (like delegate 𝐸 in Section 4.1). Among

the delegates, 21% received only one delegation besides their own (hence had weight 2 in

the decision, like delegate 𝐹 in Section 4.1), 11% received two delegations besides their own

and just about 1% received five or more delegations besides their own, showing little sign of

concentration of power.

Next, we look at the delegation graphs across different tasks and experiments. Recall

that delegations happened at the task-level so we represent delegation behaviors per task.

For each task 𝑡 and experiment 𝑒, we show in Figure A.21 the delegation graphs with all

𝑁𝑒 participants in experiments 𝑒, represented by nodes labeled by their expertise 𝜂𝑖,𝑡 =∑︀
𝑖∈[𝑁𝑒]

𝑣𝐷𝑖,𝑒,𝑡/𝑅𝑡 that is the average number of correct answers given for that task.

The top left plot shows an example of a successful delegation chain to the right, where

an expert from experiment 6 and task landmarks, with 𝜂𝑖,𝑡 = 1 was identified by six other

participants either directly or transitively through a local expert 𝑗 with 𝜂𝑗,𝑡 = 0.8. On the

right, a smaller chain shows two participants delegating to a more competent expert, who in

turn delegates to a non-expert.

Over the course of the six experiments based on five tasks each, we observed only two

delegation cycles of size two (where A delegates to B, who delegates to A), both in Experiment

3 with 𝑁3 = 32.

In the pre-surevy, only 27% of the tasks were delegated, which is much less than during

the main study (delegation rate was 47% there).
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Figure A.21: Delegation Graphs for the Different Categories

Each graph represents the performance of a group on a given category. Recall that delegations
happen at the task-level, so that one computes the average expertise across tasks 𝜂𝑖,𝑡. Each node
represent a participant 𝑖 in the experiment 𝑒 and the numbers within the node indicate their expertise
𝜂𝑖,𝑡 on task 𝑡. An out-arrow from 𝐴 to 𝐵 indicates that 𝐴 delegated to 𝐵. From left to right,
top to bottom: Knowledge in Experiment 6, Prediction in Experiment 2, Tacit in Experiment 3,
Spatial Reasoning in Experiment 5 and Popular Category in in Experiment 6. Knowledge stands
for Landmarks, Prediction for Sport, Popular Culture for Movies and Tacit for English (these were
the denominations used in the original work by Simoiu et al. [215].

A.8.6 Estimating the 𝑞 function: Probability of Delegating as a

Function of Expertise

Next, we estimate the 𝑞 function that models probability of delegating as a function expertise,

following the specifications in Equation (4.1) to assess the function overall and across each

task respectively. The results, shown in Table A.14 for the overall effect and the effects per

task.

We also report the 𝑞 function estimated with the bucketing procedure described below,
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Table A.14: Results on the Relation between Delegation Behaviors and Average Expertise
or Confidence

The summary of the average and heterogeneous effects, estimated by the models in Equations (4.1)
and (4.2) for the four main tasks conducted in each experiment. Recall that the prediction Sport
tasks were different across different experiments while the others were constant. We indicate whether
fixed effects were used (t stands for fixed effects at the task level, e at the experiment level and i
at the individual level). We further indicate whether robust clustered standard errors were used to
account for correlation within individuals 𝑖’s answers.

Overall Model Tasks Models

(Tasks)

(𝑇1) (𝑇3) (𝑇2) (𝑇4) (𝑇5) (𝑇6) (𝑇7)

Effect Size 𝛽𝑞 −2.45**** −4.44** 0.02 −5.11*** 0.48 −3.52 −3.10** −3.11
(0.50) (2.24) (1.69) (1.50) (2.28) (2.19) (1.34) (3.81)

Fixed Effects NA NA NA NA NA NA NA NA

Clustered S.E. i NA NA NA NA NA NA NA

Note: *p<0.1; **p<0.05; ***p<0.01; ****p<0.0001

where we average the number of delegations per bucket and display, as in the main study,

strong decreasing trends.

0.4 0.5 0.6 0.7 0.8 0.9

k

0.1

0.2

0.3

0.4

0.5

q(
k)

Estimation of q Across all Levels

Figure A.22: Estimation of 𝑞 using k-means clustering buckets
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A.8.7 Estimating the 𝜙 function: Delegation Choice as a Function

of Expertise

Herein, we estimate 𝜙 with 𝐵 = 4 buckets estimated with the k-means procedure and show

the estimation in Figure A.25.

A.8.7.1 k-means clustering

We find an optimal number of clusters equal to 4 (that is the number of clusters at which the

decay in within the sum of standard errors flattens as estimated by the kneedle algorithm).

The resulting centroids are 0.40, 0.61, 0.78 and 0.94, and the intervals span are, respectively,

𝑐1 = [0.00, 0.50], 𝑐2 = [0.51, 0.69], 𝑐3 = [0.70, 0.84] and 𝑐4 = [0.89, 1.00]. There are respectively

15%, 26%, 27% and 33% of the data points in each cluster. We show below the resulting

clustering and the loss curve.
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Figure A.23: Ouput of the k-means clustering procedure

A.8.7.2 Estimation of 𝜙 with k-means clustering bucketing

To test the significance of the trends observed in Figure A.25, we run the hypothesis testing

specified by Section 4.3.4.3 and show the results in Table A.15. fixed effects at the task level,
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Figure A.24: Estimates of 𝜙

Each of four plots on the left represents the values of 𝜙𝑒,𝑡
𝑙,𝑘 for a fixed type ℓ. The blue crosses

show the values computed for 𝜙𝑒,𝑡
𝑙,𝑘 at each possible 𝜂𝑘. The pink dots show the average across

all 𝜙𝑒,𝑡
𝑙,𝑘 at a level 𝜂𝑘, and the pink line corresponds to a linear regression over the mean values.

We observe increasing trends across the board, with slope (coefficient of determination) being
−0.05(0.005), 0.18(0.81), 0.39(0.91) and 0.10(0.05) respectively. The plot on the right shows the
values for 𝜙𝑒,𝑡

𝑙,𝑘 across all ℓ. The linear fits outputs a slope of 0.21 (coefficient of determination:
0.81).

e at the experiment level and 𝜂ℓ at the bucket level)

Table A.15: Results on the Relation between Delegation Behaviors and Average Expertise
or Confidence

Overall For fixed ℓ

𝑐1 𝑐2 𝑐3 𝑐4

Correlation 0.099* −0.009 0.079 0.20* 0.19
P-value 8× 10−1 0.93 0.46 9× 10−1 0.11

Note: *p<0.1; **p<0.05; ***p<0.01; ****p<0.0001
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Figure A.25: Estimates of 𝜙

Each plot represents the values of 𝜙𝑒,𝑡
𝑙,𝑘 for a fixed type ℓ. The blue crosses show the values computed

for 𝜙𝑒,𝑡
𝑙,𝑘 at each possible 𝜂𝑘. The pink dots show the average across all 𝜙𝑒,𝑡

𝑙,𝑘 at a level 𝜂𝑘, and the pink
line corresponds to a linear regression over the mean values. We observe increasing trends across
the board, but the slopes seem rather small.

A.8.7.3 Estimation of 𝜙 with equal cut and 𝐵 = 7

To test the significance of the trends observed in Figure A.25, we run the models specified

by Section 4.3.4.3 and show the results in Table A.16.

We observe that 𝜙 is increasing in its second coordinate both at the aggregate level
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Table A.16: Results on the Relation between Delegation Behaviors and Average Expertise
or Confidence

Overall For fixed ℓ

𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 𝑐7

Correlation 0.19**** 0.15 0.20 0.05 0.07 0.35*** 0.18* 0.26**

P-value 10−5 0.41 0.18 0.70 0.49 0.0003 0.08 0.04

Note: *p<0.1; **p<0.05; ***p<0.01; ****p<0.0001

𝛽𝜙 = 0.25 (𝑠.𝑒. = 0.095, 𝑡 = 2.69, 𝑝 = 0.007) and when fixing the first coordinate 𝜂ℓ. Note

that this characteristic is consistent with Halpern et al. [111]’s general continuous mechanism.

A.8.8 Core Lemma Desiderata: Concentration of Power and In-

crease in Average Expertise Due to Delegation

The maximum weights are displayed in Figure A.26. Next, we estimate the average in-

11
 (E1)

12
 (E2)

14
 (E4)

15
 (E6)

17
 (E5)

32
 (E3)

Group Size

2.5

5.0

7.5

10.0

12.5

15.0

17.5

M
ax

im
um

 W
ei

gh
t

Maximum Weight Box Plot
Ne/2

Figure A.26: Maximum Weights

From left to right, a box plot of the maximum weight 𝑚𝑒,𝑡 for each experiment 𝑒 ordered in increasing
𝑁𝑒. The box plot represent the variations in 𝑚𝑒,𝑡 for a fixed 𝑒.

crease in expertise post delegation through the model specification Equation (4.3). We find

𝛽lemma = 0.025 with 𝑠.𝑒. = 0.006, 𝑡 = 4.13 and 𝑝 = 0.00009. In other words, across all tasks
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and experiments, the mean average expertise post delegation is 2.5% higher than the mean

average expertise without delegation.

A.8.9 Liquid Democracy versus Direct Democracy

Finally, we report the results from the specification in Equation (4.4) with the response

variable being the proportion of correct answers per task and experiment. We find 𝛽LvD =

0.00 with 𝑠.𝑒. = 0.01, 𝑡 = 1 and 𝑝 = 0. Liquid and direct democracies tended to agree in the

pre-experiment.
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